Tracking interacting targets in multi-modal sensors
View/ Open
Metadata
Show full item recordAbstract
Object tracking is one of the fundamental tasks in various applications such as surveillance,
sports, video conferencing and activity recognition. Factors such as occlusions,
illumination changes and limited field of observance of the sensor make tracking a challenging
task. To overcome these challenges the focus of this thesis is on using multiple
modalities such as audio and video for multi-target, multi-modal tracking. Particularly,
this thesis presents contributions to four related research topics, namely, pre-processing of
input signals to reduce noise, multi-modal tracking, simultaneous detection and tracking,
and interaction recognition.
To improve the performance of detection algorithms, especially in the presence
of noise, this thesis investigate filtering of the input data through spatio-temporal feature
analysis as well as through frequency band analysis. The pre-processed data from multiple
modalities is then fused within Particle filtering (PF). To further minimise the discrepancy
between the real and the estimated positions, we propose a strategy that associates the
hypotheses and the measurements with a real target, using a Weighted Probabilistic Data
Association (WPDA). Since the filtering involved in the detection process reduces the
available information and is inapplicable on low signal-to-noise ratio data, we investigate
simultaneous detection and tracking approaches and propose a multi-target track-beforedetect
Particle filtering (MT-TBD-PF). The proposed MT-TBD-PF algorithm bypasses
the detection step and performs tracking in the raw signal. Finally, we apply the proposed
multi-modal tracking to recognise interactions between targets in regions within, as well
as outside the cameras’ fields of view.
The efficiency of the proposed approaches are demonstrated on large uni-modal,
multi-modal and multi-sensor scenarios from real world detections, tracking and event
recognition datasets and through participation in evaluation campaigns.
Authors
Taj, MurtazaCollections
- Theses [3711]