Automatic transcription of polyphonic music exploiting temporal evolution
Publisher
Metadata
Show full item recordAbstract
Automatic music transcription is the process of converting an audio recording
into a symbolic representation using musical notation. It has numerous applications
in music information retrieval, computational musicology, and the
creation of interactive systems. Even for expert musicians, transcribing polyphonic
pieces of music is not a trivial task, and while the problem of automatic
pitch estimation for monophonic signals is considered to be solved, the creation
of an automated system able to transcribe polyphonic music without setting
restrictions on the degree of polyphony and the instrument type still remains
open.
In this thesis, research on automatic transcription is performed by explicitly
incorporating information on the temporal evolution of sounds. First efforts address
the problem by focusing on signal processing techniques and by proposing
audio features utilising temporal characteristics. Techniques for note onset and
offset detection are also utilised for improving transcription performance. Subsequent
approaches propose transcription models based on shift-invariant probabilistic
latent component analysis (SI-PLCA), modeling the temporal evolution
of notes in a multiple-instrument case and supporting frequency modulations in
produced notes. Datasets and annotations for transcription research have also
been created during this work. Proposed systems have been privately as well as
publicly evaluated within the Music Information Retrieval Evaluation eXchange
(MIREX) framework. Proposed systems have been shown to outperform several
state-of-the-art transcription approaches.
Developed techniques have also been employed for other tasks related to music
technology, such as for key modulation detection, temperament estimation,
and automatic piano tutoring. Finally, proposed music transcription models
have also been utilized in a wider context, namely for modeling acoustic scenes.
Authors
Benetos, ECollections
- Theses [4275]