• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Viscoelastic response of cells and the role of actin cytoskeletal remodelling. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Viscoelastic response of cells and the role of actin cytoskeletal remodelling.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Viscoelastic response of cells and the role of actin cytoskeletal remodelling.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Viscoelastic response of cells and the role of actin cytoskeletal remodelling.

    View/Open
    PRAVINCUMARViscoelasticResponse2012.pdf (5.744Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    The mechanical properties of living cells provide useful information on cellular structure and function. In the present study a micropipette aspiration technique was developed to investigate the viscoelastic parameters of isolated articular chondrocytes. The Standard Linear Solid (SLS) and the Boltzmann Standard Linear Solid (BSLS) models were used to compute the instantaneous and equilibrium moduli and viscosity based on the response to an aspiration pressure of 7 cm of water. The modulus and viscosity of the chondrocytes increased with decreasing pressure rate. For example, the median equilibrium moduli obtained using the BSLS model increased from 0.19 kPa at 5.48 cmH2O/s to 0.62 kPa at 0.35 cmH2O/s. Cell deformation during micropipette aspiration was associated with an increase in cell volume and remodelling of the cortical actin visualised using GFP-actin. Interestingly, GFP-actin transfection inhibited the increase in cell moduli observed at the slower aspiration rate. Thus actin remodelling appears to be necessary for the pressure rate-dependent behaviour. A hypothesis is proposed explaining the role of actin remodelling and interaction with the membrane in regulating cell mechanics. Further studies investigated a mechanical injury model of cartilage explants which resulted in significant increases in all three viscoelastic parameters. Treatment with IL-1β also increased the instantaneous moduli of cells treated in explants but there was no difference in equilibrium moduli or viscosity. IL-1β treatment in monolayer had no effect on cell mechanics suggesting that previously reported changes in actin associated with IL-1β may be lost during cell isolation or trypsinisation. Separate studies demonstrated increases in chondrocyte moduli and viscosity during passage indicating changes in cell structure-function associated with de-differentiation in monolayer. In conclusion, this study has developed an optimised micropipette aspiration technique which was successfully used to quantify chondrocyte viscoelastic behaviour and to elucidate the underlying role of actin dynamics and response to pathological stimuli and in vitro culture.
    Authors
    Pravincumar, Priyanka
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/3357
    Collections
    • Theses [3834]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.