• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Study of protein membranes formed by interfacial crosslinking using microfluidic flow 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Study of protein membranes formed by interfacial crosslinking using microfluidic flow
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Study of protein membranes formed by interfacial crosslinking using microfluidic flow
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Study of protein membranes formed by interfacial crosslinking using microfluidic flow

    View/Open
    CHANGStudyOf2012.pdf (15.63Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Microfluidic membranes are used in myriad applications, including use in microbioreactors. They serve as bio-catalyst surfaces or allow cell adhesion. However, creating such membranes requires complex manufacturing processes including multi-step self assemble. Recently, a nylon membrane was produced in situ in a flow channel [17]. This process is completed rapidly (within a few minutes), but such membranes are essentially only gas permeable. Control of the thickness and inclusion of porosity is important for effective membrane permeably for general solute transfer and could be sensitive for a given size range of molecules. In the present work, a simplified in situ fabrication technique has been used to produce a robust and novel protein micro-membrane. The proteins studied were BSA and fibrinogen with an acyl chloride to achieve protein crosslinking. Three acyl chloride crosslinkers were tested each crosslinker also generated unique surface morphologies and cross section morphological structures. Permeability of these membranes was tested by diffusion studies using dye molecules as well as the electrochemically active. A simplified approach of using ethanol to further modify the porosity of the membrane was established. Antibacterial membranes were achieved by exposing the protein membranes to copper sulphate solution. Tensile tests on the membranes showed that there was variation in membrane strength that was related to the crosslink or molecule type, and was also related to porosity.
    Authors
    Chang, Hong
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/3170
    Collections
    • Theses [3592]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.