Show simple item record

dc.contributor.authorLowe, David James
dc.date.accessioned2013-01-11T11:19:49Z
dc.date.available2013-01-11T11:19:49Z
dc.date.issued2012
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/3126
dc.descriptionPhDen_US
dc.description.abstractNatural rubber (NR)/organoclay nanocomposites were prepared using organomontmorillonite (OMMT) and organo-sepiolite (OSEP). Both were found to improve modulus significantly more than equivalent amounts of conventional fillers such as carbon black for strains up to 100%. OSEP was found to increase modulus more than OMMT for a given filler content, and NR/OSEP nanocomposites also had potentially anisotropic physical properties. OMMT had more effect on vulcanisation than OSEP, although both produced considerable acceleration. The tensile stress-strain behaviour of NR/OMMT and NR/OSEP nanocomposites were studied using a number of different micromechanical models. Some models were found to give a good empirical t with experimental data, with the best results given by the Halpin-Tsai model. Furthermore, by analysis of the vulcanisation behaviour using rheometry, and particle morphology using transmission electron microscopy (TEM), it was possible to accurately estimate the Young's modulus of a nanocomposite from knowledge of the cure onset time and the shape factor of the particles. It was discovered that unmodified montmorillonite and sepiolite clays could undergo organic modification in situ during mixing into NR following the addition of a suitable modifier. This resulted in vulcanisates with very similar physical properties to those found when using pre-modified OMMT or OSEP. TEM and X-ray diffraction showed that the exfoliation state of the clay modified in situ was also similar to that of pre-modified organoclay. Silane coupling agents were also used with NR/OMMT and NR/OSEP nanocomposites, producing significant increases in modulus. However, the increased modulus was only observed above 40% strain for OMMT and above 25% for OSEP. The coupling agents strengthens the rubber-filler interface preventing interfacial slippage and cavitation in the nanocomposite, and these mechanisms only begin to operate when the interfacial stress reaches a significant level. The most effective coupling agent used was bis[triethoxysilylpropyl] tetrasulfide due to its relatively high reactivity.en_US
dc.language.isoenen_US
dc.publisherQueen Mary University of London
dc.subjectLawen_US
dc.titleNatural rubber/organoclay nanocompositesen_US
dc.typeThesisen_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Theses [4206]
    Theses Awarded by Queen Mary University of London

Show simple item record