Show simple item record

dc.contributor.authorHerou, Sen_US
dc.contributor.authorSchlee, Pen_US
dc.contributor.authorJorge, ABen_US
dc.contributor.authorTitirici, Men_US
dc.date.accessioned2017-12-19T11:59:51Z
dc.date.available2017-10-30en_US
dc.date.issued2018-02-01en_US
dc.date.submitted2017-12-16T23:37:54.289Z
dc.identifier.issn2452-2236en_US
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/30864
dc.description.abstract© 2017 Elsevier B.V. At present, supercapacitors constitute, along with batteries, one of the most promising electrochemical energy storage technology. The recent emerging generation of bendable portable electronic devices has boosted the research of new materials, new processing techniques and new designs that can meet the demands in terms of mechanical stability upon bending or stretching, without compromising their electrochemical performance, at an acceptable cost. Among all the electrode materials currently explored, biomass-derived carbons hold a great potential, due to their low-cost, easy processing techniques, stability and versatility. Here we introduce the range of renewable precursors available and current state-of-the-art performances, and explore the challenges regarding flexibility and sustainability.en_US
dc.format.extent18 - 24en_US
dc.relation.ispartofCurrent Opinion in Green and Sustainable Chemistryen_US
dc.rightshttps://doi.org/10.1016/j.cogsc.2017.10.005
dc.titleBiomass-derived electrodes for flexible supercapacitorsen_US
dc.typeArticle
dc.rights.holder© 2017 Elsevier B.V.
dc.identifier.doi10.1016/j.cogsc.2017.10.005en_US
pubs.notesNot knownen_US
pubs.publication-statusAccepteden_US
pubs.volume9en_US
dcterms.dateAccepted2017-10-30en_US
qmul.funderBifunctional Hybrid Electrocatalysts for Oxygen Evolution and Oxygen Reduction Reactions::Engineering and Physical Sciences Research Councilen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record