Deformable and articulated 3D reconstruction from monocular video sequences
Abstract
This thesis addresses the problem of deformable and articulated structure from motion from
monocular uncalibrated video sequences. Structure from motion is defined as the problem of
recovering information about the 3D structure of scenes imaged by a camera in a video sequence.
Our study aims at the challenging problem of non-rigid shapes (e.g. a beating heart or a smiling
face). Non-rigid structures appear constantly in our everyday life, think of a bicep curling, a
torso twisting or a smiling face. Our research seeks a general method to perform 3D shape
recovery purely from data, without having to rely on a pre-computed model or training data.
Open problems in the field are the difficulty of the non-linear estimation, the lack of a real-time
system, large amounts of missing data in real-world video sequences, measurement noise and
strong deformations. Solving these problems would take us far beyond the current state of the
art in non-rigid structure from motion. This dissertation presents our contributions in the field
of non-rigid structure from motion, detailing a novel algorithm that enforces the exact metric
structure of the problem at each step of the minimisation by projecting the motion matrices
onto the correct deformable or articulated metric motion manifolds respectively. An important
advantage of this new algorithm is its ability to handle missing data which becomes crucial
when dealing with real video sequences. We present a generic bilinear estimation framework,
which improves convergence and makes use of the manifold constraints. Finally, we demonstrate
a sequential, frame-by-frame estimation algorithm, which provides a 3D model and camera
parameters for each video frame, while simultaneously building a model of object deformations
Authors
Paladini, MarcoCollections
- Theses [4321]