Antenna and radio channel characterisation for low‐power personal and body area networks
Abstract
The continuous miniaturisation of sensors, as well as the progression in wearable electronics,
embedded software, digital signal processing and biomedical technologies, have led to new usercentric
networks, where devices can be carried in the user’s pockets, attached to the user’s body.
Body-centric wireless communications (BCWCs) is a central point in the development of fourth
generation mobile communications. Body-centric wireless networks take their place within the
personal area networks, body area networks and sensor networks which are all emerging
technologies that have a wide range of applications (such as, healthcare, entertainment,
surveillance, emergency, sports and military). The major difference between BCWC and
conventional wireless systems is the radio channels over which the communication takes place.
The human body is a hostile environment from a radio propagation perspective and it is therefore
important to understand and characterise the effects of the human body on the antenna elements,
the radio channel parameters and, hence, system performance. This thesis focuses on the study of
body-worn antennas and on-body radio propagation channels.
The performance parameters of five different narrowband (2.45 GHz) and four UWB (3.1-
10.6 GHz) body-worn antennas in the presence of human body are investigated and compared.
This was performed through a combination of numerical simulations and measurement
campaigns. Parametric studies and statistical analysis, addressing the human body effects on the
performance parameters of different types of narrowband and UWB antennas have been
presented. The aim of this study is to understand the human body effects on the antenna
parameters and specify the suitable antenna in BCWCs at both 2.45 GHz and UWB frequencies.
Extensive experimental investigations are carried out to study the effects of various antenna
types on the on-body radio propagation channels as well. Results and analysis emphasize the best
body-worn antenna for reliable and power-efficient on-body communications. Based on the
results and analysis, a novel dual-band and dual-mode antenna is proposed for power-efficient
and reliable on-body and off-body communications. The on-body performance of the DBDM
antenna at 2.45 GHz is compared with other five narrowband antennas. Based on the results and
analysis of six narrowband and four UWB antennas, antenna specifications and design guidelines
are provided that will help in selecting the best body-worn antenna for both narrowband and
UWB systems to be applied in body-centric wireless networks (BCWNs). A comparison between
IV
the narrowband and UWB antenna parameters are also provided. At the end of the thesis, the
subject-specificity of the on-body radio propagation channel at 2.45 GHz and 3-10 GHz was
experimentally investigated by considering eight real human test subjects of different shapes,
heights and sizes. The subject-specificity of the on-body radio propagation channels was
compared between the narrowband and UWB systems as well.
Authors
Khan, Mohammad MonirujjamanCollections
- Theses [4364]