Statistical modelling for facial expression dynamics
Publisher
Metadata
Show full item recordAbstract
One of the most powerful and fastest means of relaying emotions between humans are facial expressions.
The ability to capture, understand and mimic those emotions and their underlying dynamics
in the synthetic counterpart is a challenging task because of the complexity of human emotions, different
ways of conveying them, non-linearities caused by facial feature and head motion, and the
ever critical eye of the viewer. This thesis sets out to address some of the limitations of existing
techniques by investigating three components of expression modelling and parameterisation framework:
(1) Feature and expression manifold representation, (2) Pose estimation, and (3) Expression
dynamics modelling and their parameterisation for the purpose of driving a synthetic head avatar.
First, we introduce a hierarchical representation based on the Point Distribution Model (PDM).
Holistic representations imply that non-linearities caused by the motion of facial features, and intrafeature
correlations are implicitly embedded and hence have to be accounted for in the resulting
expression space. Also such representations require large training datasets to account for all possible
variations. To address those shortcomings, and to provide a basis for learning more subtle, localised
variations, our representation consists of tree-like structure where a holistic root component is decomposed
into leaves containing the jaw outline, each of the eye and eyebrows and the mouth. Each
of the hierarchical components is modelled according to its intrinsic functionality, rather than the
final, holistic expression label.
Secondly, we introduce a statistical approach for capturing an underlying low-dimension expression
manifold by utilising components of the previously defined hierarchical representation. As
Principal Component Analysis (PCA) based approaches cannot reliably capture variations caused by
large facial feature changes because of its linear nature, the underlying dynamics manifold for each
of the hierarchical components is modelled using a Hierarchical Latent Variable Model (HLVM) approach.
Whilst retaining PCA properties, such a model introduces a probability density model which
can deal with missing or incomplete data and allows discovery of internal within cluster structures.
All of the model parameters and underlying density model are automatically estimated during the
training stage. We investigate the usefulness of such a model to larger and unseen datasets.
Thirdly, we extend the concept of HLVM model to pose estimation to address the non-linear
shape deformations and definition of the plausible pose space caused by large head motion. Since
our head rarely stays still, and its movements are intrinsically connected with the way we perceive
and understand the expressions, pose information is an integral part of their dynamics. The proposed
3
approach integrates into our existing hierarchical representation model. It is learned using sparse and
discreetly sampled training dataset, and generalises to a larger and continuous view-sphere.
Finally, we introduce a framework that models and extracts expression dynamics. In existing
frameworks, explicit definition of expression intensity and pose information, is often overlooked,
although usually implicitly embedded in the underlying representation. We investigate modelling
of the expression dynamics based on use of static information only, and focus on its sufficiency
for the task at hand. We compare a rule-based method that utilises the existing latent structure and
provides a fusion of different components with holistic and Bayesian Network (BN) approaches. An
Active Appearance Model (AAM) based tracker is used to extract relevant information from input
sequences. Such information is subsequently used to define the parametric structure of the underlying
expression dynamics. We demonstrate that such information can be utilised to animate a synthetic
head avatar.
Submitted
Authors
Zalewski, LukaszCollections
- Theses [4340]