Reordering in statistical machine translation
Abstract
Machine translation is a challenging task that its difficulties arise from several characteristics
of natural language. The main focus of this work is on reordering as one of
the major problems in MT and statistical MT, which is the method investigated in this
research. The reordering problem in SMT originates from the fact that not all the words
in a sentence can be consecutively translated. This means words must be skipped and
be translated out of their order in the source sentence to produce a fluent and grammatically
correct sentence in the target language. The main reason that reordering is
needed is the fundamental word order differences between languages. Therefore, reordering
becomes a more dominant issue, the more source and target languages are
structurally different.
The aim of this thesis is to study the reordering phenomenon by proposing new methods
of dealing with reordering in SMT decoders and evaluating the effectiveness of
the methods and the importance of reordering in the context of natural language processing
tasks. In other words, we propose novel ways of performing the decoding to
improve the reordering capabilities of the SMT decoder and in addition we explore
the effect of improving the reordering on the quality of specific NLP tasks, namely
named entity recognition and cross-lingual text association. Meanwhile, we go beyond
reordering in text association and present a method to perform cross-lingual text fragment
alignment, based on models of divergence from randomness.
The main contribution of this thesis is a novel method named dynamic distortion,
which is designed to improve the ability of the phrase-based decoder in performing
reordering by adjusting the distortion parameter based on the translation context. The
model employs a discriminative reordering model, which is combining several fea-
2
tures including lexical and syntactic, to predict the necessary distortion limit for each
sentence and each hypothesis expansion. The discriminative reordering model is also
integrated into the decoder as an extra feature. The method achieves substantial improvements
over the baseline without increase in the decoding time by avoiding reordering
in unnecessary positions.
Another novel method is also presented to extend the phrase-based decoder to dynamically
chunk, reorder, and apply phrase translations in tandem. Words inside the chunks
are moved together to enable the decoder to make long-distance reorderings to capture
the word order differences between languages with different sentence structures.
Another aspect of this work is the task-based evaluation of the reordering methods and
other translation algorithms used in the phrase-based SMT systems. With more successful
SMT systems, performing multi-lingual and cross-lingual tasks through translating
becomes more feasible. We have devised a method to evaluate the performance
of state-of-the art named entity recognisers on the text translated by a SMT decoder.
Specifically, we investigated the effect of word reordering and incorporating reordering
models in improving the quality of named entity extraction.
In addition to empirically investigating the effect of translation in the context of crosslingual
document association, we have described a text fragment alignment algorithm
to find sections of the two documents in different languages, that are content-wise related.
The algorithm uses similarity measures based on divergence from randomness
and word-based translation models to perform text fragment alignment on a collection
of documents in two different languages.
All the methods proposed in this thesis are extensively empirically examined. We have
tested all the algorithms on common translation collections used in different evaluation
campaigns. Well known automatic evaluation metrics are used to compare the
suggested methods to a state-of-the art baseline and results are analysed and discussed.
Authors
Yahyaei, Mohammad SirvanCollections
- Theses [4321]