• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Robust and stable discrete adjoint solver development for shape optimisation of incompressible flows with industrial applications 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Robust and stable discrete adjoint solver development for shape optimisation of incompressible flows with industrial applications
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Robust and stable discrete adjoint solver development for shape optimisation of incompressible flows with industrial applications
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Robust and stable discrete adjoint solver development for shape optimisation of incompressible flows with industrial applications

    View/Open
    Wang_Yang_PhD_final_120117.pdf (19.88Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    This thesis investigates stabilisation of the SIMPLE-family discretisations for incompressible flow and their discrete adjoint counterparts. The SIMPLE method is presented from typical \prediction-correction" point of view, but also using a pressure Schur complement approach, which leads to a wider class of schemes. A novel semicoupled implicit solver with velocity coupling is proposed to improve stability. Skewness correction methods are applied to enhance solver accuracy on non-orthogonal grids. An algebraic multi grid linear solver from the HYPRE library is linked to flow and discrete adjoint solvers to further stabilise the computation and improve the convergence rate. With the improved implementation, both of flow and discrete adjoint solvers can be applied to a wide range of 2D and 3D test cases. Results show that the semi-coupled implicit solver is more robust compared to the standard SIMPLE solver. A shape optimisation of a S-bend air flow duct from a VW Golf vehicle is studied using a CAD-based parametrisation for two Reynolds numbers. The optimised shapes and their flows are analysed to con rm the physical nature of the improvement. A first application of the new stabilised discrete adjoint method to a reverse osmosis (RO) membrane channel flow is presented. A CFD model of the RO membrane process with a membrane boundary condition is added. Two objective functions, pressure drop and permeate flux, are evaluated for various spacer geometries such as open channel, cavity, submerged and zigzag spacer arrangements. The flow and the surface sensitivity of these two objective functions is computed and analysed for these geometries. An optimisation with a node-base parametrisation approach is carried out for the zigzag con guration channel flow in order to reduce the pressure drop. Results indicate that the pressure loss can be reduced by 24% with a slight reduction in permeate flux by 0.43%.
    Authors
    Wang, Yang
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/24870
    Collections
    • Theses [3651]
    Licence information
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.