Show simple item record

dc.contributor.authorNagarkoti, Deepak Singh
dc.date.accessioned2017-07-05T11:45:54Z
dc.date.available2017-07-05T11:45:54Z
dc.date.issued2017-02-20
dc.date.submitted2017-07-05T12:22:44.605Z
dc.identifier.citationNagarkoti, D.S. 2017. Characterisation and Design of Novel Non-Foster Circuits for Electrically Small Antennas. Queen Mary University of Londonen_US
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/24720
dc.descriptionPhDen_US
dc.description.abstractThere is a demand for broadband electrically small antennas that cover large frequency bands without any requirement of reconfiguration techniques. This is particularly true at low frequencies (VHF/UHF), where wavelengths are long and antennas are physically large. The fundamental gain-bandwidth limitation was related to the electrical size of passive electrically small antennas by Wheeler and Chu; their result implied that an electrically small antenna exhibits high quality factor which limits the bandwidth. Additionally, the gain-bandwidth limitation was related to impedance matching conditions by the Bode-Fano criteria, which restricts available bandwidth using conventional reactive elements. A non-Foster circuit approach has been presented which delivers a broadband input impedance match and also overcomes the aforementioned fundamental limits. These non-Foster impedance circuits can be realised by negative impedance converters (negative inductance and/or capacitance). The thesis also explores the advantages and challenges of antenna impedance matching using negative impedance circuits based on two topologies: (1) conventional transistorbased circuits, and (2) a novel resonant tunnelling diode approach. The advantages of non-Foster circuits in the implementation of broadband small antennas include wideband performance around one-tenth of the self-resonant frequency and overcoming of the fundamental limits associated with passive antennas. Diode-based circuits are more compact, easily configurable, less sensitive to stability, have low power consumption and are less complex as compared to the transistor based designs. These features makes it a potential candidate for array and meta-material applications. However, there are few challenges for non-Foster circuit integration with an antenna due to high noise figure, which affects the system channel capacity and receiver performance in a communication system. A detailed design procedure has been developed to mitigate the effects of noise and instability and also, the system performance and measurement of the non-Foster circuit integrated antennas have been discussed.en_US
dc.language.isoenen_US
dc.publisherQueen Mary University of Londonen_US
dc.rightsThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
dc.subjectElectronic Engineering and Computer Scienceen_US
dc.subjectNetworks and Antennasen_US
dc.titleCharacterisation and Design of Novel Non-Foster Circuits for Electrically Small Antennasen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [4235]
    Theses Awarded by Queen Mary University of London

Show simple item record