Radio channel characterisation and system-level modelling for ultra wideband body-centric wireless communications
Abstract
The next generation of wireless communication is evolving towards user-centric networks,
where constant and reliable connectivity and services are essential. Bodycentric
wireless network (BCWN) is the most exciting and emerging 4G technology
for short (1-5 m) and very short (below 1 m) range communication systems. It has
got numerous applications including healthcare, entertainment, surveillance, emergency,
sports and military. The major difference between the BCWN and conventional
wireless systems is the radio channel over which the communication takes place. The
human body is a hostile medium from the radio propagation perspective and it is
therefore important to understand and characterise the effect of the human body on
the antenna elements, the radio propagation channel parameters and hence the system
performance. In addition, fading is another concern that affects the reliability and
quality of the wireless link, which needs to be taken into account for a low cost and
reliable wireless communication system for body-centric networks.
The complex nature of the BCWN requires operating wireless devices to provide
low power requirements, less complexity, low cost and compactness in size. Apart
from these characteristics, scalable data rates and robust performance in most fading
conditions and jamming environment, even at low signal to noise ratio (SNR) is
needed. Ultra-wideband (UWB) technology is one of the most promising candidate for
BCWN as it tends to fulfill most of these requirements. The thesis focuses on the characterisation
of ultra wideband body-centric radio propagation channel using single
and multiple antenna techniques. Apart from channel characterisation, system level
modelling of potential UWB radio transceivers for body-centric wireless network is
also proposed. Channel models with respect to large scale and delay analysis are derived
from measured parameters. Results and analyses highlight the consequences
of static and dynamic environments in addition to the antenna positions on the performance
of body-centric wireless communication channels. Extensive measurement
i
campaigns are performed to analyse the significance of antenna diversity to combat
the channel fading in body-centric wireless networks. Various diversity combining
techniques are considered in this process. Measurement data are also used to predict
the performance of potential UWB systems in the body-centric wireless networks.
The study supports the significance of single and multiple antenna channel characterisation
and modelling in producing suitable wireless systems for ultra low power
body-centric wireless networks.
Authors
Abbasi, Qammer HussainCollections
- Theses [4490]