Simple low cost causal discovery using mutual information and domain knowledge
View/ Open
Metadata
Show full item recordAbstract
This thesis examines causal discovery within datasets, in particular observational datasets where
normal experimental manipulation is not possible. A number of machine learning techniques
are examined in relation to their use of knowledge and the insights they can provide regarding
the situation under study. Their use of prior knowledge and the causal knowledge produced by
the learners are examined. Current causal learning algorithms are discussed in terms of their
strengths and limitations. The main contribution of the thesis is a new causal learner LUMIN
that operates with a polynomial time complexity in both the number of variables and records
examined. It makes no prior assumptions about the form of the relationships and is capable of
making extensive use of available domain information. This learner is compared to a number of
current learning algorithms and it is shown to be competitive with them.
Authors
Joseph, AdrianCollections
- Theses [4338]