Surveillance centric coding
Metadata
Show full item recordAbstract
The research work presented in this thesis focuses on the development of techniques
specific to surveillance videos for efficient video compression with higher processing
speed. The Scalable Video Coding (SVC) techniques are explored to achieve higher
compression efficiency. The framework of SVC is modified to support Surveillance
Centric Coding (SCC). Motion estimation techniques specific to surveillance videos
are proposed in order to speed up the compression process of the SCC.
The main contributions of the research work presented in this thesis are divided into
two groups (i) Efficient Compression and (ii) Efficient Motion Estimation. The
paradigm of Surveillance Centric Coding (SCC) is introduced, in which coding aims
to achieve bit-rate optimisation and adaptation of surveillance videos for storing and
transmission purposes. In the proposed approach the SCC encoder communicates
with the Video Content Analysis (VCA) module that detects events of interest in
video captured by the CCTV. Bit-rate optimisation and adaptation are achieved by
exploiting the scalability properties of the employed codec. Time segments
containing events relevant to surveillance application are encoded using high spatiotemporal
resolution and quality while the irrelevant portions from the surveillance
standpoint are encoded at low spatio-temporal resolution and / or quality. Thanks to
the scalability of the resulting compressed bit-stream, additional bit-rate adaptation is
possible; for instance for the transmission purposes. Experimental evaluation showed
that significant reduction in bit-rate can be achieved by the proposed approach
without loss of information relevant to surveillance applications.
In addition to more optimal compression strategy, novel approaches to performing
efficient motion estimation specific to surveillance videos are proposed and
implemented with experimental results. A real-time background subtractor is used to
detect the presence of any motion activity in the sequence. Different approaches for
selective motion estimation, GOP based, Frame based and Block based, are
implemented. In the former, motion estimation is performed for the whole group of
pictures (GOP) only when a moving object is detected for any frame of the GOP.
iii
While for the Frame based approach; each frame is tested for the motion activity and
consequently for selective motion estimation. The selective motion estimation
approach is further explored at a lower level as Block based selective motion
estimation. Experimental evaluation showed that significant reduction in
computational complexity can be achieved by applying the proposed strategy. In
addition to selective motion estimation, a tracker based motion estimation and fast
full search using multiple reference frames has been proposed for the surveillance
videos.
Extensive testing on different surveillance videos shows benefits of
application of proposed approaches to achieve the goals of the SCC.
Authors
Akram, MuhammadCollections
- Theses [3702]