• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Post-Impact Compression Behaviour of Continuous Fibre Composite Materials 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Post-Impact Compression Behaviour of Continuous Fibre Composite Materials
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Post-Impact Compression Behaviour of Continuous Fibre Composite Materials
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Post-Impact Compression Behaviour of Continuous Fibre Composite Materials

    View/Open
    PRICHARDPost-ImpactCompression1991.pdf (13.49Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Compression-after-impact testing is widely used to assist in the development and selection of materials for aircraft applications. Presently, there are no standard test methods in existence. The most widely used industrial tests require large specimens which are expensive to manufacture and test. The results of an experimental study of the compression-after-impact test are reported. A miniaturised testing arrangement was used to investigate the effects of specimen width, thickness and lay-up on the measured compression strength of undamaged and impact damaged specimens. A toughened carbon I epoxy was used for the above work. In addition three other materials were tested (a carbon / polyetheretherketone (APC), a glass I epoxy (GRP) and another carbon / epoxy). The in-plane extent of delamination damage after impact was measured using an ultrasonic C-scanning method. The carbon and glass reinforced epoxy materials had similar resistance to the initiation and propagation of impact damage. The APC was much more resistant to the formation of impact damage. The measured strength of undamaged specimens was dependent upon specimen geometry, decreasing with width increase and increasing with thickness increase. The strength of impact damaged specimens was independent of width. Increasing the thickness increased the incident impact energy required to initiate damage and, therefore, delayed the onset of residual strength reductions. The strength of undamaged quasi-isotropic and 0/90 laminates was very similar and higher than for ±45 laminates. After impact the 0/90 material was strongest. The residual strength of the quasi-isotropic and ±45 materials were very similar. The APC retained the highest proportion of its initial strength over a range of incident impact energies. This was attributed to its resistance to the formation of impact damage. The GRP was the most damage tolerant material.
    Authors
    Prichard, Jonathan Clive
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/1874
    Collections
    • Theses [3822]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.