• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Development of dirt resistant polymer coatings 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Development of dirt resistant polymer coatings
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Development of dirt resistant polymer coatings
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of dirt resistant polymer coatings

    View/Open
    KINIMODevelopmentOf2005.pdf (49.77Mb)
    Metadata
    Show full item record
    Abstract
    In the construction industry, prepainted metal strip is a widely used material for fagade and roofs of building intended for commercial used. The physical properties of modem coatings are outstanding, however one big problem that remains and which affects the overall coatings performance is dirt pick up. Firstly the effect of weathering induced chemical composition change was evaluated using photo-acoustic infrared spectroscopy (PA-FTIR), and X-ray photoelectron spectroscopy (XPS). The results shown that photo-oxidation processes occurs via Norrish type I and type 11 reaction at several sites on the polymer backbone, with the ester linkage and the melamine crosslinkage being the more reactive. Secondly aluminosilicates have been found to be the main source of soiling with organic pollutants also responsible but to a minor extent, the presence of such dirt was confirmed by XPS analyses. Unusual peak shape was observed on the carbon narrow scans with low binding photoelectron emitted. Finally Polymer/organically modified layered silicates (PLS) nanocomposites are a new class of filled polymer with ultrafine phase dimension. They improve considerably the physical properties of the coating while reducing dirt pick up. The best results were obtained when the insitu intercalative method was used. However the implication of the onium salts is obscure and the relation between the nanocomposite structure and its properties is not well understood.
    Authors
    Kinimo, Codjo T
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/1859
    Collections
    • Theses [3916]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.