Composites based on natural fibres and thermoplastic matrices.
Publisher
Metadata
Show full item recordAbstract
This thesis examines the possibility of reinforcing thermoplastic matrices, notably
polypropylene (PP) and polyhydroxyalkanoates (PHAs), by (a vegetable fibre) flax.
An effort is made to enhance/optimise the mechanical properties of flax, PP
composites through a micromechanical and macromechanical study. The fibrc'matrix
interface is modified via chemical modifications as well as modifications in
processing parameters (transcrystallinity).
Effects of parameters like fibre length, fibre volume fraction and fibre-matrix interface
modification on the mechanical properties of long flax fibre reinforced PP composites
(compression moulded) as well as short flax fibre based composites (injection
moulded) are studied. In order to get a better insight in the importance of these
different parameters for the optimisation of composite performance, the experimental
results are compared with model predictions using micromechanical models for
random short-fibre-reinforced composites. For the injection moulded composites,
different compounding routes are used and compared.
The moisture resistance (pick-up and diffusivity) as well as dimensional stability
(swelling) of natural fibre mat reinforced thermoplastics (NMTs), based on different
kinds of flax fibres and PPs, are studied. The effects of a novel fibre upgrading
method for flax fibres (DuralinTM) on the moisture pick-up and residual tensile
properties of NMT composites are explored.
Biodegradable composites based on flax fibre and PHAs are analysed. It is observed
that addition of (cheap) flax fibre to polyhydroxybutyrate (PHB) could be
advantageous as far as cost-performance of biopolymer composites is concerned.
especially for stiffness critical applications. Mechanical properties of `biocomposites'
manufactured through different routes (i. e. injection moulding and compression
moulding) are compared. Addition of cheap flax fibres to an expensive and brittle
PI IA composite leads to enhanced toughness of the composites.
Abstract
A life cycle assessment (LCA) study on glass-fibre-mat-reinforced-thermoplastic
(GMT) and NMT manufactured by a current production method for thermoplastic
prepregs followed by compression moulding into an automotive and non-automotive
part is carried out.
Authors
Garkhail, Sanjeev KumarCollections
- Theses [3831]