dc.contributor.author | Bagnall, Anne-Marie | |
dc.date.accessioned | 2011-07-26T16:25:58Z | |
dc.date.available | 2011-07-26T16:25:58Z | |
dc.date.issued | 1996 | |
dc.identifier.uri | http://qmro.qmul.ac.uk/xmlui/handle/123456789/1512 | |
dc.description | PhD | en_US |
dc.description.abstract | 16 New Zealand White (NZW) rabbits were ovariectomised (OVX) and 20 left intact
as age-matched controls. 4 controls were killed at time 0, then 4 from each group at
1,3,6 and 12 months post-OVX. Serum oestradiol and body weight were recorded.
Post-mortem of the OVX animals confirmed that all ovarian tissue had been removed.
Femoral and humeral diaphyses were tested in 4-point bending, metatarsals in torsion
and cancellous bone from the femora and humeri in compression. Oestradiol levels
were not altered by OVX and there were no significant reductions in strength,
stiffness or density of cancellous or cortical bone 12 months post-OVX, except that
OVX femoral strength was significantly lower than control strength (p < 0.05). In
conclusion, the species was not a suitable model for post-menopausal osteoporosis.
Due to the failure of the rabbit model, it was necessary to revert to the rat model of
post-menopausal osteoporosis. Two mechanical tests were used to investigate the
efficacy of an anti-resorptive therapy (Oestradiol-3-benzoate) and an anabolic therapy
(Parathyroid Hormone). An indentation test examined the properties of cancellous
bone material, while the femoral neck bending test examined the properties of the
bone as an organ by reproducing the in vivo events leading to a shear fracture of the
hip. Biomechanical variables were related to Bone Mineral Density, a measure of
bone mass currently in use in clinical practice, by scanning the bones using peripheral
quantitative computed tomography (pQCT) before mechanical testing took place. It
was found that cancellous bone density and indentation strength decreased and
cortical bone density increased 6 weeks post-OVX: high levels of oestradiol-3-
benzoate prevented these changes .
Total bone mineral density was strongly correlated
with indentation strength (r=0.92). Parathyroid hormone did not restore cancellous
bone density of OVX to sham levels but restored biomechanical strength. | en_US |
dc.description.sponsorship | Engineering and Physical Science Research Council (EPSRC)
CASE Studentship | |
dc.language.iso | en | en_US |
dc.publisher | Queen Mary University of London | |
dc.subject | Medicine | en_US |
dc.title | Effects of osteoporosis and drugs on bone biomechanics. | en_US |
dc.type | Thesis | en_US |
dc.rights.holder | The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author | |