• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Naturally Inspired Multi-layer Composite Films on Planar and Modulated Surfaces 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Naturally Inspired Multi-layer Composite Films on Planar and Modulated Surfaces
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Naturally Inspired Multi-layer Composite Films on Planar and Modulated Surfaces
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Naturally Inspired Multi-layer Composite Films on Planar and Modulated Surfaces

    View/Open
    Patel_Iffat_PhD_Final_220316.pdf (6.512Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Biomimetics is a field of engineering which aims to mimic what has been present in nature. High ceramic-content biomineralized structures like abalone nacre and antler bone have a layered-architecture at the nano- and microscale, consisting of a majority phase of elastic reinforcement platelets or fibrils embedded in a minority viscoelastic phase of proteins and polysaccharides. The synthesis of such systems artificially has attracted widespread interest, with a goal to designing tough composites with adaptable mechanical properties The results of synthesis pathways towards fabricating such materials are reported herein, including a chemical infiltration route, where growth occurs inside precursor organic multilayers. The structural and mechanical similarities with natural biomineralized systems will also be explored. TGA was used to calculate the rate of mineralization within multilayer films, micromechanical-testing techniques were implemented to compare synthetic composite’s mechanical performance with natural biomineralized tissues like nacre. Finally, the mineralization process in three-dimensional multi-layer assembly is discussed using nano-patterning techniques. To gain a better reading on the presented work and contents discussed, an introduction followed up by comprehensive literature review over polymer assemblies and composite natural and man-made film are presented. Following this, the experimental section containing materials, methods and instruments are described in Chapter 4. In Chapter 5, infiltration process in layer-by-layer films on planar films producing flat substrates is reported. Chapter 6 describes peculiarities of multilayer films made of biopolymers and the chemical infiltration process in such structures, while Chapters 7 and 8 present the research data and analysis of multilayer films with chemical infiltration made modulated nano-imprinted surfaces using both synthetic and biological polymers assessing the bio-mimicking mineralisation in these systems. Finally, Chapters 9 and 10 present conclusions and future outlook.
    Authors
    Patel, Iffat Fatima
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/13042
    Collections
    • Theses [3303]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.