• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Face Alignment in the Wild. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Face Alignment in the Wild.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Face Alignment in the Wild.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Face Alignment in the Wild.

    View/Open
    Yang_Heng_PhD_final_211015.pdf (43.22Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Face alignment on a face image is a crucial step in many computer vision applications such as face recognition, verification and facial expression recognition. In this thesis we present a collection of methods for face alignment in real-world scenarios where the acquisition of the face images cannot be controlled. We first investigate local based random regression forest methods that work in a voting fashion. We focus on building better quality random trees, first, by using privileged information and second, in contrast to using explicit shape models, by incorporating spatial shape constraints within the forests. We also propose a fine-tuning scheme that sieves and/or aggregates regression forest votes before accumulating them into the Hough space. We then investigate holistic methods and propose two schemes, namely the cascaded regression forests and the random subspace supervised descent method (RSSDM). The former uses a regression forest as the primitive regressor instead of random ferns and an intelligent initialization scheme. The RSSDM improves the accuracy and generalization capacity of the popular SDM by using several linear regressions in random subspaces. We also propose a Cascaded Pose Regression framework for face alignment in different modalities, that is RGB and sketch images, based on a sketch synthesis scheme. Finally, we introduce the concept of mirrorability which describes how an object alignment method behaves on mirror images in comparison to how it behaves on the original ones. We define a measure called mirror error to quantitatively analyse the mirrorability and show two applications, namely difficult samples selection and cascaded face alignment feedback that aids a re-initialisation scheme. The methods proposed in this thesis perform better or comparable to state of the art methods. We also demonstrate the generality by applying them on similar problems such as car alignment.
    Authors
    Yang, Heng
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/12954
    Collections
    • Theses [3321]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.