Evaluating 5-nitrofurans as trypanocidal agents
View/ Open
Volume
57
Pagination
1638 - 1647 (11)
Publisher URL
DOI
10.1128/AAC.02046-12
Journal
Antimicrobial Agents and Chemotherapy
Metadata
Show full item recordAbstract
The nitroheterocycle nifurtimox, as part of a nifurtimox-eflornithine combination therapy, represents one of a limited number of treatments targeting Trypanosoma brucei, the causative agent of human African trypanosomiasis. The mode of action of this prodrug involves an initial activation reaction catalysed by a type I nitroreductase (NTR), an enzyme found predominantly in prokaryotes, leading to the formation of a cytotoxic unsaturated open chain nitrile metabolite. Here, we evaluate the trypanocidal activity of a library of other 5-nitrofurans against bloodstream form T. brucei as a preliminary step in the identification of additional nitroaromatic compounds that could potentially partner eflornithine. Biochemical screening against purified enzyme revealed that all 5-nitrofurans were effective substrates for TbNTR with the preferred compounds having apparent kcat/KM values approximately 50-fold greater than nifurtimox. For several compounds, in vitro reduction by this nitroreductase yielded products characterized by mass spectroscopy as either unsaturated or saturated open chain nitriles. When tested against bloodstream form T. brucei, many of the derivatives displayed significant growth inhibitory properties with the most potent compounds generating IC50 values around 200 nM. The anti-parasitic activity of the most potent agents was demonstrated to be NTR dependent as parasites having reduced levels of the enzyme displayed resistance to the compounds while parasites over expressing TbNTR showed hypersensitivity. We conclude that other members of the 5-nitrofurans class of nitroheterocycles have potential to treat human African trypanosomiasis perhaps as an alternative partner prodrug to nifurtimox in the next generation of eflornithine-based combinational therapies.