Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold based xenograft model
View/ Open
Publisher
Publisher URL
DOI
10.1038/leu.2016.108
ISSN
1476-5551
Metadata
Show full item recordAbstract
While NOD-SCID IL2Rγ(-/-) (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal cells were implanted to generate a human bone marrow (huBM-sc)-like niche. We observed that, in contrast to the murine bone marrow (mBM) niche, expression of BCR-ABL or MLL-AF9 was sufficient to induce both primary AML and ALL. Stemness was preserved within the human niches as demonstrated by serial transplantation assays. Efficient engraftment of AML MLL-AF9 and blast-crisis CML patient cells was also observed, whereby the immature blast-like phenotype was maintained in the huBM-sc niche, but to a much lesser extent in mBM niches. We compared transcriptomes of leukemias derived from mBM niches versus leukemias from huBM-like scaffold-based niches, which revealed striking differences in expression of genes associated with hypoxia, mitochondria and metabolism. Finally, we utilized the huBM-sc MLL-AF9 B-ALL model to evaluate the efficacy of the I-BET151 inhibitor in vivo. In conclusion, we have established human niche models in which the myeloid and lymphoid features of BCR-ABL(+) and MLL-AF9(+) leukemias can be studied in detail.
Accepted article preview online 29 April 2016; Advance online publication 17 May 2016