Show simple item record

dc.contributor.authorEvangeli, Cen_US
dc.contributor.authorSwett, Jen_US
dc.contributor.authorSpiece, Jen_US
dc.contributor.authorMcCann, Een_US
dc.contributor.authorFried, Jen_US
dc.contributor.authorHarzheim, Aen_US
dc.contributor.authorLupini, ARen_US
dc.contributor.authorBriggs, GADen_US
dc.contributor.authorGehring, Pen_US
dc.contributor.authorJesse, Sen_US
dc.contributor.authorKolosov, OVen_US
dc.contributor.authorMol, JAen_US
dc.contributor.authorDyck, Oen_US
dc.date.accessioned2024-07-05T13:30:47Z
dc.date.issued2024-04-30en_US
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/97884
dc.description.abstractGraphene is atomically thin, possesses excellent thermal conductivity, and is able to withstand high current densities, making it attractive for many nanoscale applications such as field-effect transistors, interconnects, and thermal management layers. Enabling integration of graphene into such devices requires nanostructuring, which can have a drastic impact on the self-heating properties, in particular at high current densities. Here, we use a combination of scanning thermal microscopy, finite element thermal analysis, and operando scanning transmission electron microscopy techniques to observe prototype graphene devices in operation and gain a deeper understanding of the role of geometry and interfaces during high current density operation. We find that Peltier effects significantly influence the operational limit due to local electrical and thermal interfacial effects, causing asymmetric temperature distribution in the device. Thus, our results indicate that a proper understanding and design of graphene devices must include consideration of the surrounding materials, interfaces, and geometry. Leveraging these aspects provides opportunities for engineered extreme operation devices.en_US
dc.format.extent11153 - 11164en_US
dc.languageengen_US
dc.relation.ispartofACS Nanoen_US
dc.rightsThis publication is licensed under CC-BY 4.0.
dc.subjectJoule heatingen_US
dc.subjectPeltier effecten_US
dc.subjectSeebeck coefficienten_US
dc.subjectgrapheneen_US
dc.subjecthigh current densityen_US
dc.subjectscanning thermal microscopyen_US
dc.subjectscanning transmission electron microscopyen_US
dc.titleThermoelectric Limitations of Graphene Nanodevices at Ultrahigh Current Densities.en_US
dc.typeArticle
dc.rights.holder© 2024 The Authors. Published by American Chemical Society.
dc.identifier.doi10.1021/acsnano.3c12930en_US
pubs.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/38641345en_US
pubs.issue17en_US
pubs.notesNot knownen_US
pubs.publication-statusPublisheden_US
pubs.volume18en_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
qmul.funderMolecular Network Heat Engines::UK Research and Innovationen_US
qmul.funderMolecular Network Heat Engines::UK Research and Innovationen_US
qmul.funderMolecular Network Heat Engines::UK Research and Innovationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record