Show simple item record

dc.contributor.authorTurpin, GAen_US
dc.contributor.authorNelson, RPen_US
dc.date.accessioned2024-01-22T08:05:44Z
dc.date.available2023-10-17en_US
dc.identifier.issn0035-8711en_US
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/94098
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>Previous work has shown that interactions between a central binary system and a circumbinary disc (CBD) can lead to the binary orbit either shrinking or expanding, depending on the properties of the disc. In this work, we perform two-dimensional hydrodynamical simulations of CBDs surrounding equal mass binary systems that are on fixed circular orbits, using the Athena++ code in Cartesian coordinates. Previous studies have focused on discs where viscosity drives angular momentum transport. The aim of this work is to examine how the evolution of a binary system changes when angular momentum is extracted from the disc by a magnetised wind. In this proof-of-concept study, we mimic the effects of a magnetic field by applying an external torque that results in a prescribed radial mass flux through the disc. For three different values of the radial mass flux, we compare how the binary system evolves when the disc is either viscous or wind-driven. In all cases considered, our simulations predict that the binary orbit should shrink faster by a factor of a few when surrounded by a wind-driven circumbinary disc compared to a corresponding viscous circumbinary disc. In-spiral timescales of ∼106–107 yr are obtained for circular binaries surrounded by CBDs with masses typical of protoplanetary discs, indicating that significant orbital shrinkage can occur through binary-disc interactions during Class I/II pre-main sequence phases.</jats:p>en_US
dc.languageenen_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.ispartofMonthly Notices of the Royal Astronomical Societyen_US
dc.rightsAttribution 3.0 United States*
dc.rightsThis is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record George A Turpin, Richard P Nelson, Orbital evolution of close binary systems: Comparing viscous and wind-driven circumbinary disc models, Monthly Notices of the Royal Astronomical Society, 2024;, stae109, is available online at: https://doi.org/10.1093/mnras/stae109.
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.titleOrbital evolution of close binary systems: Comparing viscous and wind-driven circumbinary disc modelsen_US
dc.typeArticle
dc.identifier.doi10.1093/mnras/stae109en_US
pubs.notesNot knownen_US
pubs.publication-statusPublished onlineen_US
pubs.publisher-urlhttp://dx.doi.org/10.1093/mnras/stae109en_US
dcterms.dateAccepted2023-10-17en_US
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
qmul.funderAstronomy Research at Queen Mary 2020 - 2023::Science and Technology Facilities Councilen_US
qmul.funderAstronomy Research at Queen Mary 2020 - 2023::Science and Technology Facilities Councilen_US
qmul.funderAstronomy Research at Queen Mary 2020 - 2023::Science and Technology Facilities Councilen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 United States
Except where otherwise noted, this item's license is described as Attribution 3.0 United States