Show simple item record

dc.contributor.authorHEPPELL, CM
dc.date.accessioned2017-10-02T15:52:08Z
dc.date.available2017-10-02T15:52:08Z
dc.date.issued2017-09-27
dc.date.submitted2017-09-27T11:12:41.020Z
dc.identifier.citationHeppell, Catherine M. et al. "Hydrological Controls On DOC&Amp;Thinsp; :&Amp;Thinsp; Nitrate Resource Stoichiometry In A Lowland, Agricultural Catchment, Southern UK." Hydrology and Earth System Sciences 21.9 (2017): 4785-4802. Web. 2 Oct. 2017.en_US
dc.identifier.issn1027-5606
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/26323
dc.description.abstractThe role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood. In light of the potential changes to the production and delivery of DOC and nitrate to rivers arising from climate change and land use management, there is a pressing need to improve our understanding of hydrological controls on DOC and nitrate dynamics in such catchments. We measured DOC and nitrate concentrations in river water of six reaches of the lowland river Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between BFI (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand, and clay). We found a significant positive relationship between nitrate and BFI (p < 0. 0001), and a significant negative relationship between DOC and BFI (p < 0. 0001), resulting in a non-linear negative correlation between DOC : nitrate molar ratio and BFI. In the Hampshire Avon, headwater reaches which are underlain by clay and characterized by a more flashy hydrological regime are associated with DOC : nitrate ratios  >  5 throughout the year, whilst groundwater-dominated reaches underlain by Chalk, with a high BFI have DOC : nitrate ratios in surface waters that are an order of magnitude lower (<  0.5). Our analysis also reveals significant seasonal variations in DOC : nitrate transport and highlights critical periods of nitrate export (e.g. winter in sub-catchments underlain by Chalk and Greensand, and autumn in drained, clay sub-catchments) when DOC : nitrate molar ratios are low, suggesting low potential for in-stream uptake of inorganic forms of nitrogen. Consequently, our study emphasizes the tight relationship between DOC and nitrate availability in agricultural catchments, and further reveals that this relationship is controlled to a great extent by the hydrological setting.en_US
dc.language.isoenen_US
dc.publisherCopernicus Publicationsen_US
dc.relation.ispartofHydrology and Earth System Sciences
dc.rightsCC-BY
dc.titleHydrological controls on DOC:nitrate resources stoichiometry in a lowland, agricultural catchment, southern UKen_US
dc.typeArticleen_US
dc.rights.holder© Author(s) 2017.
dc.identifier.doi10.5194/hess-21-4785-2017
pubs.organisational-group/Queen Mary University of London
pubs.organisational-group/Queen Mary University of London/Faculty of Humanities, Social Sciences & Law
pubs.organisational-group/Queen Mary University of London/Faculty of Humanities, Social Sciences & Law/Geography - Staff
pubs.publication-statusPublished


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Return to top