• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    On the subgroup permutability degree of some finite simple groups. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • On the subgroup permutability degree of some finite simple groups.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • On the subgroup permutability degree of some finite simple groups.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    On the subgroup permutability degree of some finite simple groups.

    View/Open
    Aivazidis_Stefanos_PhD_280715.pdf (6.868Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Consider a finite group G and subgroups H;K of G. We say that H and K permute if HK = KH and call H a permutable subgroup if H permutes with every subgroup of G. A group G is called quasi-Dedekind if all subgroups of G are permutable. We can define, for every finite group G, an arithmetic quantity that measures the probability that two subgroups (chosen uniformly at random with replacement) permute and we call this measure the subgroup permutability degree of G. This measure quantifies, among others, how close a finite group is to being quasi-Dedekind, or, equivalently, nilpotent with modular subgroup lattice. The main body of this thesis is concerned with the behaviour of the subgroup permutability degree of the two families of finite simple groups PSL2(2n), and Sz(q). In both cases the subgroups of the two families of simple groups are completely known and we shall use this fact to establish that the subgroup permutability degree in each case vanishes asymptotically as n or q respectively tends to infinity. The final chapter of the thesis deviates from the main line to examine groups, called F-groups, which behave like nilpotent groups with respect to the Frattini subgroup of quotients. Finally, we present in the Appendix joint research on the distribution of the density of maximal order elements in general linear groups and offer code for computations in GAP related to permutability
    Authors
    Aivazidis, Stefanos
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8899
    Collections
    • Theses [3711]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.