• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Autophagy in Epidermis. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Autophagy in Epidermis.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Autophagy in Epidermis.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Autophagy in Epidermis.

    View/Open
    O Akinduro_ PhD.pdf (27.55Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Organ‐transplant recipients (OTRs) on a new class of immunosuppressants, rapamycin and its analogues, have reduced cutaneous Squamous Cell Carcinomas (cSCCs). Rapamycin, an mTORC1 inhibitor, is also a known autophagy inducer in experimental models. Autophagy, which literally means self‐eating, is a cell survival mechanism but can also lead to cell death. Therefore, the main hypothesis behind this work is that rapamycin prevents epidermal tumourigenesis by either affecting epidermal mTOR regulation of autophagy and/or selectively affecting epidermal AKT isoform activity. Epidermal keratinocytes move from the proliferating basal layer upwards to the granular layers where they terminally differentiate, forming a layer of flattened, anucleate cells or squames of the cornified layer which provides an essential environmental barrier. However, epidermal terminal differentiation, a specialised form of cell death involving organelle degradation, is poorly understood. The work presented in this thesis shows that analysis of the autophagy marker expression profile during foetal epidermal development, indicates autophagy is constitutively active in the terminally differentiating granular layer of epidermis. Therefore, I hypothesize that autophagy is a mechanism of organelle degradation during terminal differentiation of granular layer keratinocytes. In monolayer keratinocytes, activation of terminal differentiation is accompanied by autophagic degradation of nuclear material, nucleophagy. This suggests that constitutive autophagy is a pro‐death mechanism required for terminal differentiation. In cultured keratinocytes and in epidermal cultures, rapamycinmediated mTORC1 inhibition strongly increases AKT1 activity as well as up‐regulates constitutive granular layer autophagy promoting terminal differentiation. Therefore, autophagy is an important fundamental process in keratinocytes which may be the mechanism by which terminally differentiating keratinocytes of the epidermal granular layer degrade their organelles required for barrier formation. This may have implications for the treatment of patients with barrier defects like psoriasis. In immunosuppressed OTRs, rapamycin may promote epidermal autophagy and AKT1 activity adding to its anti‐tumourigenic properties.
    Authors
    Akinduro, Olufolake A. E.
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8703
    Collections
    • Theses [3348]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.