• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    The representation theory of Iwahori-Hecke algebras with unequal parameters. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • The representation theory of Iwahori-Hecke algebras with unequal parameters.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • The representation theory of Iwahori-Hecke algebras with unequal parameters.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The representation theory of Iwahori-Hecke algebras with unequal parameters.

    View/Open
    Spencer_M_PhD_final_120214.pdf (379.4Kb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    The Iwahori-Hecke algebras of finite Coxeter groups play an important role in many areas of mathematics. In this thesis we study the representation theory of the Iwahori-Hecke algebras of the Coxeter groups of type Bn and F4, in the unequal parameter case. We denote these algebras HQ and KQ respectively. This follows on from work done by Dipper, James, Murphy and Norton. We are interested in the Iwahori-Hecke algebras of type Bn and F4 since these are the only cases, apart from the dihedral groups, where the Coxeter generators lie in different conjugacy classes, and therefore the Iwahori-Hecke algebra can have unequal parameters. There are two parameters associated with these algebras, Q and q. Norton dealt with the case Q = q = 0, whilst Dipper, James and Murphy addressed the case q 6= 0 in type Bn. In this thesis we look at the case Q 6= 0; q = 0. We begin by constructing the simple modules for HQ, then compute the Ext quiver and find the blocks of HQ. We continue by observing that there is a natural embedding of the algebra of type n 􀀀 1 in the algebra of type n, and this gives rise to the notion of an induced module. We look at the structure of the induced module associated with a given simple HQ-module. Here we are able to construct a composition series for the induced module and show that in a particular case the induced modules are self-dual. Finally, we look at KQ and find that the representation theory is related to representation theory of the Iwahori-Hecke algebra of type B3. Using this relationship we are able to construct the simple modules for KQ and begin the analysis of the Ext quiver.
    Authors
    Spencer, Matthew
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8644
    Collections
    • Theses [3824]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.