• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    On the ice-sediment-landform associations of surging glaciers on Svalbard 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • On the ice-sediment-landform associations of surging glaciers on Svalbard
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • On the ice-sediment-landform associations of surging glaciers on Svalbard
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    On the ice-sediment-landform associations of surging glaciers on Svalbard

    View/Open
    Lovell_H_PhD_Final_290914.pdf (27.68Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Glacier surges are amongst the most dynamic of glaciological phenomena, but their controlling mechanisms remain incompletely understood. Surging glaciers are characterised by cyclical flow instabilities and the rapid transfer of ice to the ablation area, typically resulting in significant mass loss. The High-Arctic archipelago of Svalbard is one of several regions in the northern hemisphere which contain a high-density of surge-type glaciers, variously estimated to be between 13-90% of the total glacier population across the islands. Developing a better understanding of which of these figures, if either, is most realistic is important in the context of glacier dynamics and related contributions of small glaciers and ice caps to sea level change in the immediate future. This study presents detailed assessments of the margins of several known surge-type glaciers in Svalbard in order to update and improve the existing framework by which they are identified, and to provide a foundation for future reassessments of the surge-type glacier population based on distinct ice-sediment-landform assemblages. A range of techniques is utilised, including geomorphological and structural glaciological mapping, sedimentological analysis, basal ice descriptions, and stable isotope analysis. This work provides further insight into diagnostic indicators of surge behaviour preserved in basal ice sequences; provides links between surge dynamics and basal ice sequences, the glaciological structure and the landform record; and investigates the structural and tectonic development of surge-type glaciers. Based on this, surge landsystems are proposed for: (1) small valley glaciers, (2) large land-terminating glaciers, and (3) large tidewater glaciers. It is suggested that these three landsystems, with some variability, broadly characterise the geomorphology of the vast majority of known Svalbard surge-type glaciers and, in conjunction with structural glaciological and basal ice investigations where relevant, may allow previously unknown surge-type glaciers to be identified in the field, from aerial photographs, and on sea floor imagery. This work adds to the existing repertoire of modern analogues and the breadth of surging glacier landsystems, and provides a holistic basis for assessing possible palaeo-surge behaviour within the Quaternary record.
    Authors
    Lovell, Harold
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/8552
    Collections
    • Theses [3822]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.