Sparse Representations & Compressed Sensing with application to the problem of Direction-of-Arrival estimation.
Abstract
The significance of sparse representations has been highlighted in numerous signal processing
applications ranging from denoising to source separation and the emerging field
of compressed sensing has provided new theoretical insights into the problem of inverse
systems with sparsity constraints.
In this thesis, these advances are exploited in order to tackle the problem of direction-of-arrival (DOA) estimation in sensor arrays. Assuming spatial sparsity e.g. few sources
impinging on the array, the problem of DOA estimation is formulated as a sparse representation
problem in an overcomplete basis. The resulting inverse problem can be solved
using typical sparse recovery methods based on convex optimization i.e. `1 minimization.
However, in this work a suite of novel sparse recovery algorithms is initially developed,
which reduce the computational cost and yield approximate solutions. Moreover, the
proposed algorithms of Polytope Faces Pursuits (PFP) allow for the induction of structured
sparsity models on the signal of interest, which can be quite beneficial when dealing
with multi-channel data acquired by sensor arrays, as it further reduces the complexity
and provides performance gain under certain conditions.
Regarding the DOA estimation problem, experimental results demonstrate that the
proposed methods outperform popular subspace based methods such as the multiple
signal classification (MUSIC) algorithm in the case of rank-deficient data (e.g. presence
of highly correlated sources or limited amount of data) for both narrowband and wideband
sources. In the wideband scenario, they can also suppress the undesirable effects of spatial
aliasing.
However, DOA estimation with sparsity constraints has its limitations. The compressed
sensing requirement of incoherent dictionaries for robust recovery sets limits to
the resolution capabilities of the proposed method. On the other hand, the unknown
parameters are continuous and therefore if the true DOAs do not belong to the predefined discrete set of potential locations the algorithms' performance will degrade due to
errors caused by mismatches. To overcome this limitation, an iterative alternating descent
algorithm for the problem of off-grid DOA estimation is proposed that alternates
between sparse recovery and dictionary update estimates. Simulations clearly illustrate
the performance gain of the algorithm over the conventional sparsity approach and other
existing off-grid DOA estimation algorithms.
Authors
Gretsistas, ArisCollections
- Theses [4275]