Show simple item record

dc.contributor.authorRobertson, Andrew
dc.date.accessioned2011-02-09T16:29:28Z
dc.date.available2011-02-09T16:29:28Z
dc.date.issued2009
dc.identifier.urihttps://qmro.qmul.ac.uk/xmlui/handle/123456789/602
dc.descriptionPhDen_US
dc.description.abstractThis thesis focuses on the development of automatic accompaniment systems. We investigate previous systems and look at a range of approaches that have been attempted for the problem of beat tracking. Most beat trackers are intended for the purposes of music information retrieval where a `black box' approach is tested on a wide variety of music genres. We highlight some of the diffculties facing offline beat trackers and design a new approach for the problem of real-time drum tracking, developing a system, B-Keeper, which makes reasonable assumptions on the nature of the signal and is provided with useful prior knowledge. Having developed the system with offline studio recordings, we look to test the system with human players. Existing offline evaluation methods seem less suitable for a performance system, since we also wish to evaluate the interaction between musician and machine. Although statistical data may reveal quantifiable measurements of the system's predictions and behaviour, we also want to test how well it functions within the context of a live performance. To do so, we devise an evaluation strategy to contrast a machine-controlled accompaniment with one controlled by a human. We also present recent work on a real-time multiple pitch tracking, which is then extended to provide automatic accompaniment for harmonic instruments such as guitar. By aligning salient notes in the output from a dual pitch tracking process, we make changes to the tempo of the accompaniment in order to align it with a live stream. By demonstrating the system's ability to align offline tracks, we can show that under restricted initial conditions, the algorithm works well as an alignment tool.en_US
dc.language.isoenen_US
dc.subjectElectronic Engineeringen_US
dc.titleInteractive real-time musical systemsen_US
dc.typeThesisen_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [3321]
    Theses Awarded by Queen Mary University of London

Show simple item record