• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Spatial and temporal background modelling of non-stationary visual scenes 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Spatial and temporal background modelling of non-stationary visual scenes
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Spatial and temporal background modelling of non-stationary visual scenes
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spatial and temporal background modelling of non-stationary visual scenes

    View/Open
    RUSSELLSpatialandTemporal2009.pdf (8.211Mb)
    Metadata
    Show full item record
    Abstract
    The prevalence of electronic imaging systems in everyday life has become increasingly apparent in recent years. Applications are to be found in medical scanning, automated manufacture, and perhaps most significantly, surveillance. Metropolitan areas, shopping malls, and road traffic management all employ and benefit from an unprecedented quantity of video cameras for monitoring purposes. But the high cost and limited effectiveness of employing humans as the final link in the monitoring chain has driven scientists to seek solutions based on machine vision techniques. Whilst the field of machine vision has enjoyed consistent rapid development in the last 20 years, some of the most fundamental issues still remain to be solved in a satisfactory manner. Central to a great many vision applications is the concept of segmentation, and in particular, most practical systems perform background subtraction as one of the first stages of video processing. This involves separation of ‘interesting foreground’ from the less informative but persistent background. But the definition of what is ‘interesting’ is somewhat subjective, and liable to be application specific. Furthermore, the background may be interpreted as including the visual appearance of normal activity of any agents present in the scene, human or otherwise. Thus a background model might be called upon to absorb lighting changes, moving trees and foliage, or normal traffic flow and pedestrian activity, in order to effect what might be termed in ‘biologically-inspired’ vision as pre-attentive selection. This challenge is one of the Holy Grails of the computer vision field, and consequently the subject has received considerable attention. This thesis sets out to address some of the limitations of contemporary methods of background segmentation by investigating methods of inducing local mutual support amongst pixels in three starkly contrasting paradigms: (1) locality in the spatial domain, (2) locality in the shortterm time domain, and (3) locality in the domain of cyclic repetition frequency. Conventional per pixel models, such as those based on Gaussian Mixture Models, offer no spatial support between adjacent pixels at all. At the other extreme, eigenspace models impose a structure in which every image pixel bears the same relation to every other pixel. But Markov Random Fields permit definition of arbitrary local cliques by construction of a suitable graph, and 3 are used here to facilitate a novel structure capable of exploiting probabilistic local cooccurrence of adjacent Local Binary Patterns. The result is a method exhibiting strong sensitivity to multiple learned local pattern hypotheses, whilst relying solely on monochrome image data. Many background models enforce temporal consistency constraints on a pixel in attempt to confirm background membership before being accepted as part of the model, and typically some control over this process is exercised by a learning rate parameter. But in busy scenes, a true background pixel may be visible for a relatively small fraction of the time and in a temporally fragmented fashion, thus hindering such background acquisition. However, support in terms of temporal locality may still be achieved by using Combinatorial Optimization to derive shortterm background estimates which induce a similar consistency, but are considerably more robust to disturbance. A novel technique is presented here in which the short-term estimates act as ‘pre-filtered’ data from which a far more compact eigen-background may be constructed. Many scenes entail elements exhibiting repetitive periodic behaviour. Some road junctions employing traffic signals are among these, yet little is to be found amongst the literature regarding the explicit modelling of such periodic processes in a scene. Previous work focussing on gait recognition has demonstrated approaches based on recurrence of self-similarity by which local periodicity may be identified. The present work harnesses and extends this method in order to characterize scenes displaying multiple distinct periodicities by building a spatio-temporal model. The model may then be used to highlight abnormality in scene activity. Furthermore, a Phase Locked Loop technique with a novel phase detector is detailed, enabling such a model to maintain correct synchronization with scene activity in spite of noise and drift of periodicity. This thesis contends that these three approaches are all manifestations of the same broad underlying concept: local support in each of the space, time and frequency domains, and furthermore, that the support can be harnessed practically, as will be demonstrated experimentally.
    Authors
    Russell, David Mark
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/598
    Collections
    • Theses [3706]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.