• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Strategies for image visualisation and browsing 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Strategies for image visualisation and browsing
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Strategies for image visualisation and browsing
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Strategies for image visualisation and browsing

    View/Open
    JANJUSEVICStrategies2010.pdf (24.04Mb)
    Metadata
    Show full item record
    Abstract
    The exploration of large information spaces has remained a challenging task even though the proliferation of database management systems and the state-of-the art retrieval algorithms is becoming pervasive. Signi cant research attention in the multimedia domain is focused on nding automatic algorithms for organising digital image collections into meaningful structures and providing high-semantic image indices. On the other hand, utilisation of graphical and interactive methods from information visualisation domain, provide promising direction for creating e cient user-oriented systems for image management. Methods such as exploratory browsing and query, as well as intuitive visual overviews of image collection, can assist the users in nding patterns and developing the understanding of structures and content in complex image data-sets. The focus of the thesis is combining the features of automatic data processing algorithms with information visualisation. The rst part of this thesis focuses on the layout method for displaying the collection of images indexed by low-level visual descriptors. The proposed solution generates graphical overview of the data-set as a combination of similarity based visualisation and random layout approach. Second part of the thesis deals with problem of visualisation and exploration for hierarchical organisation of images. Due to the absence of the semantic information, images are considered the only source of high-level information. The content preview and display of hierarchical structure are combined in order to support image retrieval. In addition to this, novel exploration and navigation methods are proposed to enable the user to nd the way through database structure and retrieve the content. On the other hand, semantic information is available in cases where automatic or semi-automatic image classi ers are employed. The automatic annotation of image items provides what is referred to as higher-level information. This type of information is a cornerstone of multi-concept visualisation framework which is developed as a third part of this thesis. This solution enables dynamic generation of user-queries by combining semantic concepts, supported by content overview and information ltering. Comparative analysis and user tests, performed for the evaluation of the proposed solutions, focus on the ways information visualisation a ects the image content exploration and retrieval; how e cient and comfortable are the users when using di erent interaction methods and the ways users seek for information through di erent types of database organisation.
    Authors
    Janjusevic, Tijana
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/579
    Collections
    • Theses [3706]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.