• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Inorganic carbon acquisition in Palmaria palmata (Rhodophyta) 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Inorganic carbon acquisition in Palmaria palmata (Rhodophyta)
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Inorganic carbon acquisition in Palmaria palmata (Rhodophyta)
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Inorganic carbon acquisition in Palmaria palmata (Rhodophyta)

    View/Open
    HILLInorganicCarbon2010.pdf (2.177Mb)
    Metadata
    Show full item record
    Abstract
    DIC acquisition mechanisms and the use of DIC in photosynthesis were examined in the temperate red macroalga, Palmaria palmata (Linnaeus) O. Kuntze. Photosynthetic O2 evolution was unsaturated at the ambient DIC concentration in seawater. Experiments with inhibitors of the mammalian HCO3 -/Cl- anion exchanger AE1, and the HCO3 - -hydroxylating enzyme carbonic anhydrase (CA), showed that HCO3 - uptake is mediated mainly by a bicarbonate transporter protein. Photosynthesis measured at small increments of DIC addition showed biphasic kinetics, with a hiatus located at 0.625 mM DIC. Inhibitor experiments indicated that extracellular CA is active at low DIC, therefore the biphasic kinetics of photosynthesis may have been caused by the presence of two DIC acquisition mechanisms. Culturing thalli for 6 d in artificial seawater containing 8 mM DIC induced a bicarbonate transporter in the CAuser Chondrus crispus, but no change in activity was detected in P. palmata. Presence of a bicarbonate transporter mechanism was also confirmed by using the polymerase chain reaction. Primers based on the mammalian AE1 gene sequence were used to amplify a 1500bp fragment of bicarbonate transporter gene from genomic DNA extracted from P. palmata and the calcifying microalga, Emiliania huxleyi. Comparison of the algal and mammalian sequences revealed a high amino acid sequence homology, indicating that they encoded structurally and functionally similar proteins. 3 F.F. Blackman’s precept, which implies that carbon limitation does not occur at subsaturating light, was investigated by measuring induced chlorophyll fluorescence at different DIC concentrations and irradiances. Photosynthetic electron transport rate was was stimulated at saturating light, but only slightly at subsaturating light. Thus, Blackman’s theory was upheld. Photosynthesis and bicarbonate transporter activity was monitored in P. palmata growing at St. Margaret’s Bay, Kent, UK. Distinct peaks in photosynthesis occurred in March and October, and coincided with equinoctial tides. Bicarbonate transporter activity was maximal in spring, and decreased during summer. Although it was not possible to show what determined the seasonal patterns of photosynthesis and bicarbonate transporter activity, the possibility that exposure to springwater containing high concentrations of DIC and nitrate is discussed.
    Authors
    Hill, Gregg
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/536
    Collections
    • Theses [3321]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.