• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Spatial auditory display for acoustics and music collections 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Spatial auditory display for acoustics and music collections
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Spatial auditory display for acoustics and music collections
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spatial auditory display for acoustics and music collections

    View/Open
    STEWARTSpatialAuditory2010.pdf (6.828Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    This thesis explores how audio can be better incorporated into how people access information and does so by developing approaches for creating three-dimensional audio environments with low processing demands. This is done by investigating three research questions. Mobile applications have processor and memory requirements that restrict the number of concurrent static or moving sound sources that can be rendered with binaural audio. Is there a more e cient approach that is as perceptually accurate as the traditional method? This thesis concludes that virtual Ambisonics is an ef cient and accurate means to render a binaural auditory display consisting of noise signals placed on the horizontal plane without head tracking. Virtual Ambisonics is then more e cient than convolution of HRTFs if more than two sound sources are concurrently rendered or if movement of the sources or head tracking is implemented. Complex acoustics models require signi cant amounts of memory and processing. If the memory and processor loads for a model are too large for a particular device, that model cannot be interactive in real-time. What steps can be taken to allow a complex room model to be interactive by using less memory and decreasing the computational load? This thesis presents a new reverberation model based on hybrid reverberation which uses a collection of B-format IRs. A new metric for determining the mixing time of a room is developed and interpolation between early re ections is investigated. Though hybrid reverberation typically uses a recursive lter such as a FDN for the late reverberation, an average late reverberation tail is instead synthesised for convolution reverberation. Commercial interfaces for music search and discovery use little aural information even though the information being sought is audio. How can audio be used in interfaces for music search and discovery? This thesis looks at 20 interfaces and determines that several themes emerge from past interfaces. These include using a two or three-dimensional space to explore a music collection, allowing concurrent playback of multiple sources, and tools such as auras to control how much information is presented. A new interface, the amblr, is developed because virtual two-dimensional spaces populated by music have been a common approach, but not yet a perfected one. The amblr is also interpreted as an art installation which was visited by approximately 1000 people over 5 days. The installation maps the virtual space created by the amblr to a physical space.
    Authors
    Stewart, Rebecca
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/413
    Collections
    • Theses [3367]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.