Towards music perception by redundancy reduction and unsupervised learning in probabilistic models
Abstract
The study of music perception lies at the intersection of several disciplines: perceptual
psychology and cognitive science, musicology, psychoacoustics, and acoustical
signal processing amongst others. Developments in perceptual theory over the last
fifty years have emphasised an approach based on Shannon’s information theory and
its basis in probabilistic systems, and in particular, the idea that perceptual systems
in animals develop through a process of unsupervised learning in response to natural
sensory stimulation, whereby the emerging computational structures are well adapted
to the statistical structure of natural scenes. In turn, these ideas are being applied to
problems in music perception.
This thesis is an investigation of the principle of redundancy reduction through
unsupervised learning, as applied to representations of sound and music.
In the first part, previous work is reviewed, drawing on literature from some of the
fields mentioned above, and an argument presented in support of the idea that perception
in general and music perception in particular can indeed be accommodated within
a framework of unsupervised learning in probabilistic models.
In the second part, two related methods are applied to two different low-level representations.
Firstly, linear redundancy reduction (Independent Component Analysis)
is applied to acoustic waveforms of speech and music. Secondly, the related method of
sparse coding is applied to a spectral representation of polyphonic music, which proves
to be enough both to recognise that the individual notes are the important structural elements,
and to recover a rough transcription of the music.
Finally, the concepts of distance and similarity are considered, drawing in ideas
about noise, phase invariance, and topological maps. Some ecologically and information
theoretically motivated distance measures are suggested, and put in to practice in
a novel method, using multidimensional scaling (MDS), for visualising geometrically
the dependency structure in a distributed representation.
Authors
Abdallah, Samer A.Collections
- Theses [4404]