• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Applications of artificial neural networks (ANNs) in several different materials research fields 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Applications of artificial neural networks (ANNs) in several different materials research fields
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Applications of artificial neural networks (ANNs) in several different materials research fields
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Applications of artificial neural networks (ANNs) in several different materials research fields

    View/Open
    ZHANGApplicationsOf2010.pdf (12.57Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    In materials science, the traditional methodological framework is the identification of the composition-processing-structure-property causal pathways that link hierarchical structure to properties. However, all the properties of materials can be derived ultimately from structure and bonding, and so the properties of a material are interrelated to varying degrees. The work presented in this thesis, employed artificial neural networks (ANNs) to explore the correlations of different material properties with several examples in different fields. Those including 1) to verify and quantify known correlations between physical parameters and solid solubility of alloy systems, which were first discovered by Hume-Rothery in the 1930s. 2) To explore unknown crossproperty correlations without investigating complicated structure-property relationships, which is exemplified by i) predicting structural stability of perovskites from bond-valence based tolerance factors tBV, and predicting formability of perovskites by using A-O and B-O bond distances; ii) correlating polarizability with other properties, such as first ionization potential, melting point, heat of vaporization and specific heat capacity. 3) In the process of discovering unanticipated relationships between combination of properties of materials, ANNs were also found to be useful for highlighting unusual data points in handbooks, tables and databases that deserve to have their veracity inspected. By applying this method, massive errors in handbooks were found, and a systematic, intelligent and potentially automatic method to detect errors in handbooks is thus developed. Through presenting these four distinct examples from three aspects of ANN capability, different ways that ANNs can contribute to progress in materials science has been explored. These approaches are novel and deserve to be pursued as part of the newer methodologies that are beginning to underpin material research.
    Authors
    Zhang, Yiming
    URI
    https://qmro.qmul.ac.uk/xmlui/handle/123456789/362
    Collections
    • Theses [3824]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.