Retrieval and Annotation of Music Using Latent Semantic Models
Abstract
This thesis investigates the use of latent semantic models for annotation and
retrieval from collections of musical audio tracks. In particular latent semantic
analysis (LSA) and aspect models (or probabilistic latent semantic analysis,
pLSA) are used to index words in descriptions of music drawn from hundreds
of thousands of social tags. A new discrete audio feature representation is introduced
to encode musical characteristics of automatically-identified regions
of interest within each track, using a vocabulary of audio muswords. Finally a
joint aspect model is developed that can learn from both tagged and untagged
tracks by indexing both conventional words and muswords. This model is
used as the basis of a music search system that supports query by example and
by keyword, and of a simple probabilistic machine annotation system. The
models are evaluated by their performance in a variety of realistic retrieval
and annotation tasks, motivated by applications including playlist generation,
internet radio streaming, music recommendation and catalogue search
Authors
Levy, MarkCollections
- Theses [3822]