Show simple item record

dc.contributor.authorZhang, Zhifei
dc.date.accessioned2017-09-28T13:49:50Z
dc.date.available2017-09-28T13:49:50Z
dc.date.issued2017-05-24
dc.date.submitted2017-09-28T14:22:46.094Z
dc.identifier.citationZhang, Z. 2017. Polytetrafluoroethylene Nanofibres Fabricated by the Island-in-the-Sea Method. Queen Mary University of Londonen_US
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/25989
dc.descriptionPhDen_US
dc.description.abstractPolytetrafluoroethylene (PTFE) has some unique properties such as high hydrophobicity and high resistance to elevated temperatures, chemicals and solvents, which make it of interest for numerous fibre and textile applications. However, PTFE normally has a very high viscosity and poor flowability in the melt due to its ultra-high molecular weight, meaning that it cannot be readily melt-spun into textile fibres. In addition, PTFE is insoluble in all common organic solvents, prohibiting its use in common solution spinning methods such as dry, wet or electrospinning. Here we aim to develop an easy and environmentally friendly alternative for the production of PTFE nanofibres, using a modified island-in-the-sea spinning process. For this, first a dispersion of PTFE homopolymer, PVA and water was compounded to create a blend of PTFE particles in PVA solution using different methods, including casting, single-step extrusion and two-step-compounding and extrusion. After solid-state drawing of this blend and removal of the PVA, we were able to collect PTFE nanofibres with finest diameters of around 50nm and lengths up to 15μm. The effects of blend composition, morphology and drawing on PTFE fibre formation and properties were studied and discussed. Furthermore, some other material modification systems, including plasticized PVA, or the use ethylene glycol as a solvent, was studied with the aim of scaling up the fabrication of PTFE nanofibres by spinning the PTFE/PVA blend fibres directly for a twin-screw extruder.en_US
dc.description.sponsorshipQMUL and the China Scholarship Councilen_US
dc.language.isoenen_US
dc.publisherQueen Mary University of Londonen_US
dc.rightsThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
dc.subjectEngineering and Materials Scienceen_US
dc.subjectPolytetrafluoroethylene Nanofibresen_US
dc.titlePolytetrafluoroethylene Nanofibres Fabricated by the Island-in-the-Sea Methoden_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Theses [3592]
    Theses Awarded by Queen Mary University of London

Show simple item record