• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Cryptogenography: Anonymity without trust 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Cryptogenography: Anonymity without trust
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Cryptogenography: Anonymity without trust
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cryptogenography: Anonymity without trust

    View/Open
    JAKOBSEN_Sune_PhD_Final_181016.pdf (1.164Mb)
    Editors
    Keevash, P
    Riis, S
    Metadata
    Show full item record
    Abstract
    The usual methods of getting anonymity, such as using a VPN or the Tor network, requires some amount of trust: You have to either trust a particular server or trust that not too many servers in a network have been corrupted. In this thesis, we will explore how much we can do without this assumption. Throughout the thesis we will assume that there is an adversary who can see all messages sent, that no two people have access to shared randomness and for much of the thesis we further assume that the adversary has unbounded computational power. In this case, it is impossible for one or more leakers to send any information without revealing some information about who they are. We defi ne a measure of suspicion, which captures the anonymity loss of revealing information in this model: to reveal one bit of information, you will, in expectation, have to become one bit more suspicious. This measure is used to compute the exact amount of information a group of leakers can reveal if they want to keep reasonable doubt about who the leakers are. We also get exact results for the case where some people, censors, are trying to obstruct the leakage by sending misleading messages. The main result in these models is that (even without censors) the leakers can only reveal a very small amount of information. However, the protocols shown to exists might still be a useful alternative to warrant canaries. We also consider the case where the adversary has bounded computational power. In this model, we show that it is still impossible for one leaker to reveal information without losing some anonymity. However, if we give the leaker access to a small anonymous channel, she can use this, combined with steganography, to reveal a large amount of information anonymously.
    Authors
    JAKOBSEN, SK
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/23264
    Collections
    • Theses [3702]
    Licence information
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.