• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Free-convection condensation on single horizontal pin-fin tubes 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Free-convection condensation on single horizontal pin-fin tubes
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Free-convection condensation on single horizontal pin-fin tubes
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Free-convection condensation on single horizontal pin-fin tubes

    View/Open
    ALIFree-Convection2011.pdf (9.598Mb)
    Metadata
    Show full item record
    Abstract
    New experimental data are reported for free-convection condensation of ethylene glycol and R-113 on three-dimensional pin-fin tubes. Effects of pin geometry and tube thermal conductivity (for copper, brass and bronze giving a mean range of 400, 120 and 80 W/m K over the range of temperature of interest) were investigated. All tests were performed at near atmospheric pressure with downward flowing vapour at low velocity. Heat-transfer enhancement was found to be approximately twice the corresponding active surface area of the tubes, i.e. the surface area of the parts of the tube and pin surface not covered by condensate retained by surface tension. For ethylene glycol, the best performing pin-fin tube gave a heat-transfer enhancement of 5.8, about 24 % higher than the ‘equivalent’ two-dimensional integral-fin tube (i.e. with the same finroot diameter, longitudinal fin spacing and thickness and fin height). For R-113, the best enhancement was 5.9, about 10 % higher than the equivalent integral-fin tube. For both fluids tested, vapour-side, heat-transfer enhancement was found to increase with decreasing circumferential pin spacing and increasing pin height. Circumferential pin thickness had little effect on heat-transfer enhancement. Effects of tube thermal conductivity were found to be more significant for ethylene glycol than R-113. Retention angle measurements were made under static conditions (without condensation) and were found to be larger than for equivalent integral-fin tubes. An expression for condensate retention angle on pin-fin tubes was proposed and found to agree with the measured retention angles to ±15%. A semi-empirical model for condensation heat transfer on horizontal pin-fin tubes has been developed which accounts for the combined effect of gravity and surface tension. The model predicts the majority of available data to ±20 %.
    Authors
    Ali, Hafiz-Muhummad
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/2322
    Collections
    • Theses [3831]
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.