Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions
View/ Open
Metadata
Show full item recordAbstract
The research presented in this thesis aims to extend the scalability range of the
wavelet-based video coding systems in order to achieve fully scalable coding with a
wide range of available decoding points. Since the temporal redundancy regularly
comprises the main portion of the global video sequence redundancy, the techniques
that can be generally termed motion decorrelation techniques have a central role in
the overall compression performance. For this reason the scalable motion modelling
and coding are of utmost importance, and specifically, in this thesis possible
solutions are identified and analysed.
The main contributions of the presented research are grouped into two
interrelated and complementary topics. Firstly a flexible motion model with rateoptimised
estimation technique is introduced. The proposed motion model is based
on tree structures and allows high adaptability needed for layered motion coding. The
flexible structure for motion compensation allows for optimisation at different stages
of the adaptive spatio-temporal decomposition, which is crucial for scalable coding
that targets decoding on different resolutions. By utilising an adaptive choice of
wavelet filterbank, the model enables high compression based on efficient mode
selection. Secondly, solutions for scalable motion modelling and coding are
developed. These solutions are based on precision limiting of motion vectors and
creation of a layered motion structure that describes hierarchically coded motion.
The solution based on precision limiting relies on layered bit-plane coding of motion
vector values. The second solution builds on recently established techniques that
impose scalability on a motion structure. The new approach is based on two major
improvements: the evaluation of distortion in temporal Subbands and motion search
in temporal subbands that finds the optimal motion vectors for layered motion
structure.
Exhaustive tests on the rate-distortion performance in demanding scalable video
coding scenarios show benefits of application of both developed flexible motion
model and various solutions for scalable motion coding.
Authors
Mrak, MartaCollections
- Theses [3824]