Show simple item record

dc.contributor.authorHorikiri, Kana
dc.date.accessioned2011-08-18T10:38:21Z
dc.date.available2011-08-18T10:38:21Z
dc.date.issued2011
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/1881
dc.descriptionPhDen_US
dc.description.abstractThe study of rotor blade aerodynamic performances of wind tur- bine has been presented in this thesis. This study was focused on aero- dynamic effects changed by blade surface distribution as well as grid solution along the airfoil. The details of numerical calculation from Fluent were described to help predict accurate blade performance for comparison and discussion with available data. The direct surface curvature distribution blade design method for two-dimensional airfoil sections for wind turbine rotors have been dis- cussed with the attentions to Euler equation, velocity diagram and the factors which affect wind turbine performance and applied to design a blade geometry close to an existing wind turbine blade, Eppler387, in order to argue that the blade surface drawn by direct surface curvature distribution blade design method contributes aerodynamic efficiency. The FLUENT calculation of NACA63-215V showed that the aero- dynamic characteristics agreed well with the available experimental data at lower angles of attack although it was discontinuities in the surface curvature distributions between 0.7 and 0.8 in x/c. The dis- continuities were so small that the blade performance could not be affected. The design of Eppler 387 blade performed to reduce drag force. The discontinuities of surface distributionmatched the curve of the pressure coefficients. It was found in the curvature distribution that the leading edge pressure side had difficulties to connect to Bezier curve and also the trailing edge circle was never be tangent to the lines of trailing edge pressure and suction sides due to programming difficulties.en_US
dc.language.isoenen_US
dc.subjectEngineeringen_US
dc.titleAerodynamics of wind turbinesen_US
dc.typeThesisen_US
dc.rights.holderThe copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record