• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Two-dimensional numerical experiments of convection. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Two-dimensional numerical experiments of convection.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Two-dimensional numerical experiments of convection.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Two-dimensional numerical experiments of convection.

    View/Open
    SIMMONSTwoDimensional1996.pdf (30.75Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    I report the results of numerical studies of 2-dimensional fully compressible convection of a fluid in which the dependence of the radiative conductivity on temperature T is taken as K, (V + aT -5)1 so that central regions of the layer are unstable to convection whereas the surrounding layers are stable. Calculations have been undertaken for Rayleigh numbers at the centre of the unstable layer Rc,, = 4.78 106 -9-56 107 and Prandtl numbers a=0.05 - 1. The main result found is that in a (statistically) stationary state the viscous dissipation decreases with decreasing Prandtl number, and that the equilibrium of the whole layer is governed by a substantial penetrative region in which the convective flux is negative. The results found here suggest that the so called "Roxburgh criterion" can be used to give a good estimate of convective penetration at small Prandtl numbers. I also report the results of three sets of numerical experiments involving the interaction of magnetic fields with 2-dimensional fully compressible convection, were the fluid has the same conductivity. For these experiments R9subscript cen)= 4.78 106 and [sigma]=1.0, typically. For one set of experiments a simple model of the evolution of a toroidal flux tube is considered. The purpose of these numerical experiments was to test the role played by magnetic buoyancy in the rise of the magnetic flux tube. It was found that magnetic buoyancy was not important, except possibly when the initial field strength was large (Chandrasekhar number Q= 10'). In another set of numerical experiments the initial magnetic field was an uniform horizontal field. One of the results found was that the magnetic field did not significantly reduce convective penetration, even when the total (integrated) magnetic energy was of the same order as the total kinetic energy. The general behaviour found was that magnetic field was expelled from the convective region, until Q- 10'. Then the initial field strength was strong enough to suppress convection completely. No oscillatory solutions were found. Finally experiments were made for initially vertical magnetic fields. An oscillatory solution is presented. Also reported are preliminary calculations of 2-dimensional penetrative convection, for a model were the effects of energy generation and self gravity are included.
    Authors
    Simmons, John Christopher
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/1589
    Collections
    • Theses [3822]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.