• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Experimental investigation of condensation heat transfer in microchannels. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Experimental investigation of condensation heat transfer in microchannels.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • Experimental investigation of condensation heat transfer in microchannels.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Experimental investigation of condensation heat transfer in microchannels.

    View/Open
    SUExperimentalInvestigation2007.pdf (17.81Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    The thesis describes experiments aimed at measurement of heat-transfer coefficients for condensation in a multi micro channel tube. Experiments were performed with steam and R113, fluids chosen to cover a wide range of thermophysical properties, in particular, surface tension which plays an important role during condensation in small, non-circular channels. The aluminum extruded condenser tube used had cooled length 748 mm and 13 parallel channels each with height 1.38 mm and width 1.41 mm. The upper and lower outer surfaces were cooled separately by water in counter flow in channels above and below the test tube. The mass flow rates in the two channels were adjusted to be the same. Coolant temperatures were measured at 17 positions along each of the coolant channels as well as at inlet and exit. An accurate direct measurement of the overall inlet-to-outlet coolant temperature difference was also measured directly with a 10 junction thermopile for each of the two coolant streams with junctions downstream of mixers. Temperatures of the condenser tube wall were measured at 10 positions on each of the upper and lower surfaces using embedded thermocouples. Temperatures and pressures of the vapour were measured in chambers at the inlet and outlet of vapour stream. Pressures were also measured in the condenser channels just upstream and just downstream of the cooled section. Data have been obtained for cases where the vapour was saturated (for both steam and R113) at inlet. Runs were made for complete and incomplete condensation within the tube. Earlier investigations are critically reviewed and seen to exhibit wide scatter and disagreement. For reasons which will become clear in the thesis, the present results cannot, unfortunately, be claimed to have superior accuracy and generally fall within the ranges of earlier data. A new and innovative test section has been designed and will be used in forthcoming experiments.
    Authors
    Su, Qian
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/1588
    Collections
    • Theses [3360]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.