Show simple item record

dc.contributor.authorTaylor-King, JPen_US
dc.contributor.authorKlages, Ren_US
dc.contributor.authorFedotov, Sen_US
dc.contributor.authorVan Gorder, RAen_US
dc.date.accessioned2016-06-23T13:11:07Z
dc.date.available2016-06-08en_US
dc.date.issued2016-07en_US
dc.date.submitted2016-06-10T18:27:19.304Z
dc.identifier.urihttp://qmro.qmul.ac.uk/xmlui/handle/123456789/13058
dc.description.abstractLévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in terms of quantities that can be measured experimentally.en_US
dc.format.extent012104 - ?en_US
dc.languageengen_US
dc.relation.ispartofPhys Rev Een_US
dc.rightshttp://arxiv.org/abs/1606.03395
dc.titleFractional diffusion equation for an n-dimensional correlated Lévy walk.en_US
dc.typeArticle
dc.identifier.doi10.1103/PhysRevE.94.012104en_US
pubs.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/27575074en_US
pubs.issue1-1en_US
pubs.notesNo embargoen_US
pubs.notesaccepted for publication in PREen_US
pubs.publication-statusPublisheden_US
pubs.volume94en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record