• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    A Novel Fibre Composite System to Investigate Tenocyte Metabolism Under Physiological and Pathological Loading Conditions. 
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • A Novel Fibre Composite System to Investigate Tenocyte Metabolism Under Physiological and Pathological Loading Conditions.
    •   QMRO Home
    • Queen Mary University of London Theses
    • Theses
    • A Novel Fibre Composite System to Investigate Tenocyte Metabolism Under Physiological and Pathological Loading Conditions.
    ‌
    ‌

    Browse

    All of QMROCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    ‌
    ‌

    Administrators only

    Login
    ‌
    ‌

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Novel Fibre Composite System to Investigate Tenocyte Metabolism Under Physiological and Pathological Loading Conditions.

    View/Open
    Patel_Dharmesh_PhD_Final_171215.pdf (8.351Mb)
    Publisher
    Queen Mary University of London
    Metadata
    Show full item record
    Abstract
    Tendons are crucial for locomotion, transferring forces from muscle to bone. They are subjected to high forces, and possess highly specialised hierarchical structures to function efficiently. Tendinopathies are debilitating tendon disorders common in both athletes and non-athletes. The unclear aetiology of tendinopathies has led to limited, generalised treatment, with poor regenerative outcomes for patients. Tendinopathies are thought to be instigated by changes in the local cellular environment, with tendon overuse generating matrix microdamage, which increases cellular shear. Shear is potentially an important mechanotransduction cue, but no mechanism is available to investigate this directly. To address this need, a fibre composite system based on polyethylene glycol (PEG) was developed, consisting of cell seeded PEG-peptide fibres encapsulated in a PEG matrix. Composites were developed to mimic the cell mechanical environment in tendons, creating shear-tension ratios equivalent to those seen physiologically (40% of applied strain transferred to the fibres; the remaining 60% as fibre shearing within the matrix). High shear-low tension (~25% tension, ~75% shear) and low shear-high tension (~60% tension, ~40% shear) environments were also developed to investigate non-physiological conditions. Broad spectrum gene expression analysis was performed to determine how different shear-tension ratios affect the behaviour of tenocytes derived from healthy and tendinopathic human tendons. Tendinopathic tenocytes appeared more mechano-sensitive than healthy tenocytes (shear-tension mediated changes in versican, IL-8, TIMP-3, MMP-3 and MMP-13 expression) and showed a distinct basal profile similar to that observed in tendinopathic tissue (lower MMP-3 and higher MMP-13 expression). Further investigation with bovine tenocytes found changing the cell attachment peptide in fibres from RGD to DGEA increased the sensitivity of tenocytes to the local shear-tension environment (shear-mediated changes in scleraxis, MMP-2 and COL-3 expression). This suggests tenocytes are more responsive when attached to collagen-like materials, and consequently that specific integrins are involved in sensing the local shear-tension environment.
    Authors
    Patel, Dharmesh
    URI
    http://qmro.qmul.ac.uk/xmlui/handle/123456789/13038
    Collections
    • Theses [3711]
    Copyright statements
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author
    Twitter iconFollow QMUL on Twitter
    Twitter iconFollow QM Research
    Online on twitter
    Facebook iconLike us on Facebook
    • Site Map
    • Privacy and cookies
    • Disclaimer
    • Accessibility
    • Contacts
    • Intranet
    • Current students

    Modern Slavery Statement

    Queen Mary University of London
    Mile End Road
    London E1 4NS
    Tel: +44 (0)20 7882 5555

    © Queen Mary University of London.