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Abstract

Human communication encompasses a rich mixture of verbal and non-verbal cues,

significantly contributing to conveying emotion and mental state. While humans in-

stinctively recognise such cues, explaining and defining them in natural language is

challenging, rendering tasks in affective computing more complex than other discrim-

inative tasks, e.g. object detection, as the ground truths are ambiguous in classic

supervised settings. The primary focus of this thesis is to develop automated methods

to predict human emotion and negative symptoms of schizophrenia, primarily from

non-verbal facial cues. By acknowledging the substantial methodological and contex-

tual overlap between predicting human emotion and assessing negative symptoms of

schizophrenia—closely linked to affect and emotion—we adopt a concurrent approach,

focusing on three key challenges predominantly tied to the nature of ground truth la-

bels. More specifically, through this thesis, we aim to address a) the label uncertainty

in human affect, which stems from the inherently noisy nature of human emotions and

can be seen in practice by annotators’ disagreement, b) labels that describe a broader

behaviour resulting in low-label resolution and c) the vast variability of human affect,

which results in subjective emotional descriptions when expressed in natural language.

Firstly, we propose a method that addresses label uncertainty in continuous affect.

We assume that each ground truth label is a univariate Gaussian distribution with

a mean equal to the ground truth mean and an unknown variance that is predicted

by the network. The Kullback-Leibler-based loss minimises the distance between the

Gaussian ground truth and the Dirac delta prediction. We show that the proposed

loss improves convergence and a relationship between the estimated variance and noisy

samples. Secondly, we propose a deep learning approach for continuous affect and

symptom estimation in long video samples that learns from the clip and the batch con-
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text. Contrary to previous works that addressed the problem either using statistical

representations or trimming videos into shorter clips, we propose using features from

the wider video when making a clip prediction. We also introduce a novel loss as an

auxiliary task, named the relational regression loss that aligns the continuous label

vector distances in the mini-batch to those of the latent features. The ablation studies

show that both components offer significant performance improvements to both tasks.

Finally, we develop a novel vision-language model that utilises sample-level text de-

scriptions as natural language supervision to learn semantically rich representations for

each sample to address the intra-class variability of emotional expression. Then, during

inference, we use category-level descriptions for each emotion in a zero-shot approach

rather than the typical class prototypes previously used in zero-shot Facial Expression

Recognition. We also use the vision modality as a backbone for the downstream task of

schizophrenia symptom estimation. The method shows significant improvement com-

pared to baseline methods and outperforms previous works on both tasks, showing the

benefit of more fine-grained approaches.
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Chapter 1

Introduction

Contents

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Recent years have seen an explosion of technological advancements, often neologically

described as the fourth industrial revolution. As such, the interactions of humans with

automated systems have been integrated into the daily lives of people in most developed

nations. The rise in Human-Computer Interaction (HCI) has even taken over areas tra-

ditionally requiring communication or coordination between humans, for example, in

customer service [86]. However, these systems still largely depend on rigid choices

rather than natural communication, including essential non-verbal and emotional cues,

which comprise a large part of human communication and behaviour. Affective com-

puting, a multi-disciplinary research area, attempts to bridge the gap by recognising,

processing and simulating human affect [90] in an automated manner. There are several

potential applications for affective computing, ranging from enhancing user experience

in human-computer interaction, fostering more intuitive and empathetic interfaces to

assisting doctors [77] and educators [128] where the technology can facilitate personal-

ised and emotionally aware interactions, ultimately contributing to improved well-being

1



(a) Ekman & Friessen [35] six basic
emotions (b) Arousal-Valence circumplex [99]

Figure 1.1: Examples of the six basic emotions first proposed by Ekman &
Friessen [35] a and the Arousal-Valence circumplex b (recreated from [39])

and learning outcomes respectively. While non-verbal cues can include a vast number

of behaviours, such as body pose and hand gestures, the most common and universally

recognised are related to facial expressions. Non-verbal emotional cues are not only

important for effective communication but can also be indicators of mental illness as

several disorders are associated with human affect, such as depression, schizophrenia

or other associated illnesses [121].

While humans instinctively express and interpret emotional cues, particularly in the

form of facial expressions, these are hard to explain in natural language, as is evident

by the multiple models proposed to formalise human affect. More specifically, starting

with a categorical interpretation, Ekman & Friessen [35] identified six basic emotions

universally experienced in all cultures. However, while these six categories, namely hap-

piness, sadness, disgust, fear, surprise, and anger, can easily be explained in natural

language, there are several issues associated with this coarse categorisation. Namely,

the coarse categories do not include any information on the intensity, thus creating

substantial intra-category differences. In addition, emotional and mental states can be

complex or not fully described as sub-categories of the basic six (e.g. confused). To

address the shortcomings of the coarse categorical emotions, the continuous Arousal -
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Valence circumplex was proposed [99]. This model of emotion introduces emotional

and mental states as points on a two-dimensional space defined by the extent to which

an emotion is associated with a sensation of energy –Arousal– and the extent to which

an emotion reflects a positive state of mind –Valence. By treating each emotional state

as a unique data point, the circumplex addresses the issues associated with coarse cat-

egorisation; however, continuous scales are not intuitive or easily explained in natural

language, raising questions on the scale’s universality and interoperability. Visual ex-

amples of the basic emotions and the circumplex can be seen in Fig. 1.1. To address the

complexity of human emotional expression, several models, such as compound emotions

or identifying fine-grain Action Units [36], have been proposed in psychology. How-

ever, the former may still suffer from ambiguity, and the latter can be very effective in

describing an expression but not in translating to emotional terms.

Similarly, in clinical practice, the understanding of illnesses has evolved from broad

definitions to fine-grained and detailed descriptions of specific symptoms, many of

which are related to non-verbal behaviour and apparent affect. However, as we es-

tablished previously, human behaviour, in general, can be abstract, leading to some

disagreement in diagnosis and assessment even amongst experts [56, 104]. For example,

the intensity of Blunted Affect, one of the negative symptoms of schizophrenia, is set

relative to “normal” emotional responsiveness, which is very difficult to quantify and,

therefore, can be open to individual interpretation. As these definitions have an ele-

ment of subjectivity and unconscious bias, any automated system is susceptible to the

same pitfalls trained human experts would be. In other words, whether looking into the

very large intra-category differences of coarse categorical models or uncertainty of con-

tinuous labels, Machine Learning (ML) methods in affective computing are presented

with a more noisy problem definition than in other ML tasks, e.g. object detection.

Further to the inherent noise associated with human behaviour, tasks in affective

computing share additional challenges. More specifically, as affective tasks typically

3



1.1. Problem Definition

contain identifiable information, obtaining large datasets is difficult due to confidenti-

ality concerns, particularly for mental health tasks where medical records are further

constrained, leading to limited data availability. In addition, as human behaviour can

refer to either very short bursts or wider behaviour, very often, samples in dynamic

tasks are very long sequences associated with a single label. This low-label resolu-

tion, i.e. having a single label vector for a very long sequence, is problematic as in

dynamic human behaviour, it can translate to aleatoric uncertainty in the data [68] or

methodological constraints such as forgetting [46].

As we have established, affective computing tasks share a number of similarities in

terms of the problem definitions, challenges and, therefore, the approaches used to

address them. In this thesis, we address challenges that are common in several human

behavioural tasks and, more specifically, in human affect and negative symptoms of

schizophrenia (which are related to affect) by developing methodologies that can extend

to both tasks concurrently. We note that the term “negative” in this context refers to

behaviour that is not present in patients relative to the general population and not to

the effect these symptoms have.

1.1 Problem Definition

The core aim of this thesis is to contribute to the development of a fully automated

system for understanding emotional and mental states in the wild (i.e., not in a lab or

under posed conditions) that can aid human experts. However, in contrast with other

supervised computer vision tasks where the ground truth can be easily defined with

very little variation between expert annotators (e.g. object detection), human beha-

viour tends to exhibit a more fluid and dynamic nature in comparison. Consequently,

annotations utilised as ground truth labels in a supervised setting will inherently con-

tain noise, as they are shaped by the annotator’s interpretation of the subjects’ beha-

viour. This is evident in the multiple models proposed by psychologists to explain the

4



1.1. Problem Definition

human emotional experience; whether addressing human affect with coarse categories

or as a set of continuous labels, the ground truth remains ambiguous.

Categorical models define emotions as discrete categories; Ekman’s [35] model of

basic emotions defined seven emotions –anger, disgust, happiness, sadness, fear, con-

tempt, and surprise– as the primary universal ones, both in terms of expression and

understanding across cultures and individuals. Ekman’s categorical model does not

claim that the range of human emotions is limited to those seven categories but that

all other emotional states originate from them. This translates to very large intra-

class variability as each category does not account for intensity or complex emotions;

for example, anger will include samples from annoyance to rage, which can have very

different facial expressions associated with them and are influenced by factors such as

culture, anatomy and context.

To address the shortcomings of categorical models, several continuous models are

proposed, the arousal-valence circumplex [99] being the most common to map hu-

man affect. Dimensional models can measure intensity and theoretically capture the

broad spectrum of human emotions. However, the arousal-valence axes are not self-

explanatory, resulting in ambiguity when annotating and interpreting samples.

Similarly, in several mental health tasks, the symptom definitions and their associ-

ated intensities are described in natural language; however, as we have established the

variability in human behaviour, symptom definitions can also be abstract and subject-

ive. For example, a common non-verbal symptom of schizophrenia is Blunted Affect,

where patients “exhibit less than normal facial expressions”; this, however, assumes a

common universal definition for the “normal” range of expressiveness.

Such variations can be mitigated by training the expert annotators [11] but not com-

pletely eliminated [56]. While this label noise is inherent in all tasks related to human

behaviour to various degrees, in this thesis, we focus on addressing the problem in the
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1.1. Problem Definition

tasks of apparent emotion and schizophrenia symptom estimation. In addition to the

label noise discussed in both tasks, negative symptoms of schizophrenia and apparent

affect manifest themselves in similar non-verbal manners, i.e. facial expressions, body

pose, vocal expression, etc. Thus, based on both similar manifestations in terms of

the subject’s behaviour and similar challenges with regard to the ground truth, it is

intuitive to examine the two tasks concurrently.

There are several ways to address issues around ground truth, whether labels are

categorical or continuous. Note that the thesis does not propose a new label model but

explores methods that are aware of the problems associated with ground truth labels in

affective computing. The first aim is to estimate the apparent continuous affect along

the arousal and valence axis. We thus treat the problem as a regression. The second

aim of the thesis is to estimate symptom severity of several negative symptoms of

schizophrenia that are related to apparent affect and thus have similar difficulties both

in the data and the label definitions. As humans have individual ways of expressing

and describing apparent emotion, the final aim of this thesis is to infer emotion based

on the natural language descriptions of each category rather than typical classification

tasks. In Chapters 3 & 4, we focus on addressing issues in continuous labels, while in

Chapter 5, we focus on issues associated with the definitions of categorical emotions.

More specifically, in Chapter 3, we directly address label uncertainty measured by

annotators’ variance. In addition to the main regression task, we also estimate the

label noise of each sample and compare it to the annotators’ disagreement at test time.

In Chapter 4, we address issues associated with low-label resolution and representation

learning in continuous tasks. We continue measuring the apparent affect on the arousal-

valence circumplex but extend the methodology to the mental health task. Finally, in

Chapter 5, we explore the use of descriptions of facial expressions in natural language

for zero-shot classification of emotions.
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1.1.1 Challenges

In this section, we will describe the main challenges of the problems we are addressing,

namely, a) noisy labels, b) low-label resolution, and c) new and unseen emotional

and mental states. Following each challenge definition, we briefly describe how this is

addressed.

a) Noisy Labels: In this thesis, we use facial expressions and emotions to estimate

symptom severity in patients with schizophrenia. However, as previously discussed,

there is an inherent subjectivity in understanding and expressing emotion. Therefore,

the annotators’ unconscious bias will affect any data used for training and evaluating

ML systems. To mitigate the bias, authors typically use multiple expert annotators

for each sample and use the inter-annotator agreement to measure label quality when

collecting and annotating datasets. In most cases, and for simplicity, researchers take

the average label (for continuous Arousal-Valence) or the mode in categorical labels to

address disagreement; however, such an approach disregards any information regarding

the sample we would get from the variance. In other words, the label noise can give us

information regarding how “easy” a sample is to learn. Furthermore, by modelling the

label noise, we can learn from noisy samples and improve ML systems’ understanding

of human affect.

Methods using the categorical model often use the distribution of labels as soft su-

pervision to better learn under label noise [65]; however, in continuous affect, label

uncertainty is rarely addressed either explicitly or implicitly. As part of this thesis, we

address and leverage information from noisy continuous labels by modelling the ground

truth as a univariate Gaussian distribution with an unknown variance predicted by the

network. The uncertainty-aware loss used during training improves several architec-

tures’ performance in static and dynamic continuous effect estimation. In addition,

during inference, we show a weak relationship between annotators’ disagreement and

predicted variance, indicating the model’s understanding of noise.
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b) Low Label Resolution: In affect and mental health tasks, the labels typically

refer to a wider behaviour dependent on the context rather than per-frame categorisa-

tion. While the latter, i.e. static Facial Expression Recognition (FER), is a valid task of

affective computing, it completely disregards temporal information and does not reflect

human emotional experience. As such, including a wider temporal context can signific-

antly improve an automated system’s understanding of apparent emotion and mental

state, particularly in mental health, where understanding the underlying pattern of

behaviour is crucial in diagnosis. However, this low label resolution creates several

issues when estimating long sequences, with, first and foremost, limitations faced by

modern hardware. In addition, recurrent architectures used for long-sequence analysis

tend to face issues with vanishing gradients [46]. In contrast, Transformer [116] based

architectures are typically data and resource-hungry, especially when long-sequence in-

puts are used. Furthermore, due to confidentiality constraints, affect and mental health

datasets typically contain few samples.

To address the issue of low label resolution in a low-data regime, we propose using

the context of each sample. This is done in two ways: directly by building a two-stage

attention architecture that uses features from the video clips’ temporal neighbourhood

to directly introduce context information in the feature extraction. In addition, we

introduce a novel loss that uses the distance between label vectors to learn intra-batch

latent representation similarities in a supervised manner, thus learning from the batch

context. More specifically, the two-stage architecture is building upon previous work

in action recognition [122] to improve clip-level prediction using the temporal context,

using an improved architecture to reduce the number of trainable parameters and com-

putational resources needed. Inspired by the success of Contrastive Learning [27] in

single-label categorical tasks, we propose aligning the distances of latent feature rep-

resentations with the distances of the label vectors in multi-label regression problems

in affect and mental health. The introduction of the proposed loss as an auxiliary to

the main regression acts as a strong regulariser, particularly when a very limited num-
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ber of samples is available, directly addressing the data-hungry nature of Transformer

architectures.

c) New and Unseen Emotional States: One of the main arguments against the

categorical model of Ekman & Friessen [35] is the rigidity of the category definitions

compared to human emotional expression and understanding. Even though the cat-

egorical model originally proposed the basic emotions as coarse categories from which

fine-grained emotional categories stem, in most FER datasets, only the coarse categor-

ies are represented as they are easily defined and, in most cases, are self-explanatory in

contrast to more fine-grained or continuous annotations. However, coarse categorisa-

tion suffers from several issues; namely, it does not address emotion intensity, there are

vast intra-class differences, and it may be inadequate to describe the apparent emotion,

particularly for downstream tasks.

This thesis proposes using sample-level descriptions for natural language supervision

in dynamic zero-shot FER. Natural language supervision is not a novel paradigm on

its own; however, this is a novel approach for zero-shot FER that typically learns rep-

resentations using class prototypes. Furthermore, as we accept that the basic emotions

are inadequate to describe all emotional states and, in many cases, show significant

intra-class variation, we propose manipulating the latent space of description repres-

entations of basic emotions to obtain representations for compound emotions rather

than creating additional prompts. The improved embedding space from natural lan-

guage supervision can also be seen in the downstream task of schizophrenia symptom

estimation, particularly for symptoms that are, by definition, related to FER.

1.2 Contributions

In this section, we list the main contributions of the thesis. In the first main chapter

(Chapter 3), we train multiple backbone architectures with the proposed uncertainty-

aware approach in video and static datasets. More specifically, the main contributions
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of this chapter can be listed as follows:

• We build upon the work of He et al. [50] to address label noise in continuous

human affect. This novel approach addresses uncertainty stemming from annot-

ators’ disagreement in affective computing. The motivation behind it lies in the

inherent ambiguity of continuous affect; rather than taking the mean of the annot-

ators as the ground truth, which is the typical approach, we address each target

label as a univariate Gaussian distribution with a mean and an unknown vari-

ance that the model predicts. To do so, we optimise two Multi-Layer Perceptron

(MLP) heads, one predicting the mean and the other predicting the variance of

the respective Gaussian label. This is achieved by optimising a Kullback–Leibler

(KL) based loss that estimates the distance between the predicted Gaussian and

a Dirac delta centred around the predicted mean.

• We show that the proposed approach improves the performance of several con-

volutional backbone architectures, as the KL-based loss allows for smoother con-

vergence by penalising the network less for ambiguous samples.

• We finally show a weak relationship between estimated variance and label noise

in two datasets, with both video and static image samples.

In the following chapter (Chapter 4), our contributions are twofold: introducing a novel

loss that helps regularise the training in a low-data regime and building an architecture

that uses context to improve clip-level predictions in low-label resolution tasks. The

main contributions of this chapter can be listed as follows:

• We introduce a novel loss as an additional task to the primary regression task,

named relational loss. This loss aims to align the intra-batch distances of the

label vectors with the distances of the latent feature representations. We show
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that the improved latent space helps improve the main regression task by a large

margin, particularly on small datasets.

• We also propose building upon previous work [122] to use features from each clip’s

context to improve prediction. To achieve this, we use a two-branch network

with shared weights, where one branch extracts clip-level features and the other

context-level features. We achieve shorter training times and more parameter-

efficient networks by sharing weights between branches.

• We show how the methodology performs on the tasks of continuous affect and

schizophrenia symptom severity estimation.

Finally, in the last main chapter of the thesis (Chapter 5), we propose fine-tuning

Vision Language Models (VLM) in dynamic affect, by training on video-text pairs.

Contrary to previous zero-shot works that use class prototypes for each emotional

class, we propose to use sample-level descriptions to capture the intra-class variations

in the latent feature space. The main contributions of this chapter can be listed as

follows:

• As there are surprisingly only a handful of previous works of zero-shot FER, we

are among the first to evaluate the capabilities of VLMs on the task.

• We introduce a method that manipulates the latent representations of basic emo-

tions to represent compound emotions rather than creating additional prompts.

• Through both qualitative and quantitative assessments, we show that fine-tuning

using sample-level descriptions improves representation learning on the domain.

• Extensive experiments on four popular dynamic FER datasets show the method’s

zero-shot capabilities. We also use the fine-tuned model as a feature extractor in

the downstream task of symptom estimation.
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1.3 Thesis structure

The rest of the thesis is structured as follows. In Chapter 2, we start by reviewing

the literature related to schizophrenia symptom estimation and the various challenges

identified. More specifically, we review works addressing uncertainty, representation

learning, and Zero-Shot learning. In Chapter 3, our first methodological chapter, we

follow by presenting our work on addressing label uncertainty in continuous affect.

Chapter 4 presents the two-stage attention architecture and the proposed relational

loss. In Chapter 5, we present our approach for zero-shot FER for basic and com-

pound emotions. Finally, we draw our conclusions and opportunity for future work in

Chapter 6.

12



Chapter 2

Literature Review

Contents

2.1 Schizophrenia Symptom Estimation . . . . . . . . . . . . . . . . . 14

2.2 Addressing Data and Label Uncertainty . . . . . . . . . . . . . . . 17

2.3 Learning Representations and Label Relations . . . . . . . . . . . 19

2.4 Addressing large sequences . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Vision and Language Models . . . . . . . . . . . . . . . . . . . . . 21

2.6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

In Chapter 1, we discussed the applications of affective computing and introduced

some preliminary knowledge on schizophrenia. We begin Chapter 2 by describing the

various works on schizophrenia symptom estimation using audio-visual input in Sec-

tion 2.1. We continue the chapter by discussing how previous works in computer vision

in general and then human affect specifically address Data and Label Uncertainty in

Section 2.2. We then present works in representation learning in Section 2.3 and ad-

dressing long sequences in Section 2.4. Finally, we present works using VLM, as natural

language supervision has shown impressive capabilities in zero-shot discriminative tasks

in Section 2.5.
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2.1 Schizophrenia Symptom Estimation

As several mental health illnesses and disorders have non-verbal behaviour symptoms,

understanding patients’ affect is important in diagnosis and severity estimation. De-

pression is a mood disorder that has an impact on patients’ affective state; similarly,

several schizophrenia negative symptoms refer to patients’ affect and expressions; there-

fore, there are important semantic parallels between continuous affect estimation and

mental health assessment, so we examine them in parallel. More work has been per-

formed on estimating depression severity than symptoms of schizophrenia, as there are

no publicly available datasets for the latter.

Currently, mental health practitioners primarily rely on clinical interviews following a

structured framework outlined in DSM-V [121] to assess individuals with schizophrenia.

As such, leveraging audio-visual recordings of patients for diagnosis and symptom es-

timation presents a more intuitive approach that closely resembles real-world conditions

than medical imaging or bio-signals.

In clinical practice, schizophrenia manifests itself in various aspects of a patient’s

behaviour, encompassing facial expressions, vocal patterns, and overall demeanour.

Mental health practitioners directly gauge these behavioural symptoms as an estimate

of the individual’s illness state and progression. Since discrete values measure symptom

severity, researchers have approached this problem primarily as either multi-label multi-

class classification or multi-label regression tasks.

Tahir et al. [109, 110] addressed the problem of symptom severity estimation on the

Positive Negative Symptom Scale (PANSS) [55] symptom scale, as both a classification

and a regression task using Support Vector Machines (SVM) and Support Vector Re-

gression (SVR) and with the use of hand-crafted features of non-verbal cues associated

with conversations (e.g., interruption, natural turn, etc). However, such features re-

quire significant manual effort and thus are not fit to train large models with adequate
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2.1. Schizophrenia Symptom Estimation

generalisation.

As para-linguistic features have been proven to be crucial in estimating affect [20,

96], several works [24, 37, 18] use low-level descriptors (lld) from audio recordings

of patients. Chakraborty et al. [24] used lld from clinical interviews and Principle

Component Analysis (PCA) to reduce their dimensions. The authors trained several

binary classifiers for high-low classification of each symptom on NSA16 [4]. Similarly,

Boer et al. [18] extracted acoustic features using the OpenSMILE [38] toolkit and

trained a set of Random Forest classifiers for a three-class classification task. However,

binary and few class classifiers are not adequate to describe the full spectrum of the

illness.

Similar to para-linguistic audio features, certain behavioural symptoms are manifes-

ted in the subjects’ facial expressions and mannerisms. As a proof-of-concept, Barz-

ilay et al. [12] extracted features related to the subject’s facial expression per frame and

in the whole video. These were then used to train a set of SVM models for affect sub-

types in patients with schizophrenia, one for each of the five annotators. By highlighting

the high disagreement between the human annotators, this study underlines the need

for automated and consistent symptom assessment and diagnosis. Furthermore, as the

classification process, in this case, is (in practice) conducted using personalised models

for each annotator, the overall accuracy seems to depend on the annotator without

creating a unified model or addressing the annotators’ disagreement. Similarly, Ab-

bas et al. [1] measured the head movement of subjects from smartphone front cameras.

A linear regression was trained for symptom severity estimation, showing a negative

relationship between head movement and high-symptom severity, particularly for neg-

ative symptoms, as would be expected based on the symptom definition. However, the

results obtained are not robust, as would be expected from using a single feature.

Tron et al. [113, 115] recorded 34 schizophrenia patients and healthy controls during

a clinical interview. From the video recordings, 23 Action Units (AU) [36] and their
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respective intensities were extracted for each frame. In [113], hand-crafted features,

such as activation ratio and intensity, were used as descriptors of the patients’ facial

behaviour to train an SVM classifier on binary schizophrenia detection; in addition,

the authors trained a ridge regression on symptom intensity within the patient pool

of the collected dataset. Similarly, in a subsequent study [115], a k-means clustering

algorithm was used first to assign each frame to a centroid, with the cluster centres

representing facial expression prototypes. The use of AU and SVR is also adopted

by Vijay et al. [117]; similarly to Tron et al. [113], the authors extracted AU from

the whole recording session of a patient and constructed handcrafted features related

to the AU prevalence and intensity to train a series of SVRs on symptom intens-

ity. Bishay et al. [15] continued using AU as inputs to estimate symptom severity, as

in [113, 115, 117]. More specifically, the authors took a staged approach, first training

multiple VGG16 [105] networks on the detection of individual AUs. Contrary to pre-

vious works [113, 114, 115] that used hand-crafted features from frame level AUs, [15]

used a Gaussian Mixture Model (GMM) followed by a Fisher Vector transformation

to standardise the input to a fixed-length vector. The use of GMM and Fisher Vector

transformation is streamlining and automating the process further; however, there is

less control in feature selection and engineering. Finally, two Fully Connected (FC)

layers were then used for the regression task, the first one estimating individual symp-

tom intensities for three symptoms on the PANSS [55] negative scale or all expressive

symptoms of the Clinical Assessment Interview for Negative Symptoms (CAINS) [40],

and the second estimating the total negative score using the individual symptoms as

input. While a clear progression from hand-crafted features to statistical represent-

ations can be seen in the literature, these methods disregard temporal relationships

of features between frames and focus on AUs, which can potentially lead to omitted

variable bias.

As ML for mental health is an emerging field, there are several open questions and fu-

ture directions. The majority of studies included in this section use simpler linear meth-

16



2.2. Addressing Data and Label Uncertainty

odologies to address the problem, with only two using deep learning approaches [15, 16].

This is in stark contrast to the majority of works in other domains, where deep learn-

ing methodologies are the dominant paradigm. As such, there is significant potential

for methodological improvements in the domain of fine-grained symptom estimation.

Furthermore, the majority of the works use models pre-trained on different tasks to

extract features rather than using the raw image in their method, thus leading to po-

tential omitted variable bias. Finally, the temporal relationships between features in

works using audio-visual features are not utilised in previous works; therefore, there is

significant work that can be done in the field, learning from the temporal dimension.

2.2 Addressing Data and Label Uncertainty

A significant amount of work has been done on data uncertainty in the form of noisy

labels for classification tasks. Methodologies such as MixMatch [14], DivideMix [69],

and FixMatch [108] are adopting a semi-supervised approach to address noisy labels

and make a decision during training that splits samples into clean and noisy subsets.

However, this approach, i.e., making a hard decision on uncertain samples, does not

offer interpretability of the per-sample data uncertainty. In contrast, the proposed

method adopts a continuous measure, which is derived per sample by a branch of the

network.

Bayesian deep learning approaches have gained popularity in dealing with data uncer-

tainty; for instance, for the task of image segmentation, Kendall and Gal [58] proposed

a per-pixel regression uncertainty-aware approach. Similarly, modelling data uncer-

tainty in latent space [103, 25, 100] has proven to improve face recognition. However,

these works focus on data rather than label uncertainty. Moreover, in domains such

as object detection [50] and temporal action localisation [124], data uncertainty is ad-

dressed by learning the variance of a continuous prediction value, i.e., the bounding box

spatial boundaries of an object in an image or the temporal boundaries of an action in
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a video, by optimising a modified KL divergence loss function.

In these works, uncertainty is modelled per sample as a set of univariate Gaussian

distributions of the predicted regression values, with both mean values and variances

being predicted by the network. In contrast, instead of the predictions, the proposed

method models the ground truth values as uni-variate Gaussians, for which the annot-

ators’ mean values are given and the variances are optimised using a KL-divergence-

based loss term. Moreover, while data uncertainty modelling has been implemented in

other regression problems, it appears that none of these works addresses the problem

in continuous affect estimation.

Yannakakis et al. [131] propose comparing samples and ranking them rather than

using absolute labels to address data uncertainty. This is an interesting approach to

address label uncertainty; however, most datasets are annotated in a categorical or

continuous manner and not in rankings. A recent work by Toisoul et al. [112] also

evaluates against a “clean” subset of AffectNet [84], where samples are excluded when

deemed noisy by a set of predefined rules. Their method performs better on the clean

evaluation set, even though noisy sample labels are not corrected or excluded during

training. Resigno et al. [97] propose the use of personal models for affect recognition to

overcome generalisation issues due to physiological or cultural differences. However, the

aforementioned works do not estimate the level of label uncertainty in affect estimation

but rather attempt to clean the dataset of noisy samples. Han et al. [48] propose an

uncertainty-aware methodology for continuous affect estimation by explicitly training

on the inter-annotator disagreement as an additional task. Similarly, Chou and Lee [28]

propose an ensemble methodology for speech emotion classification and use annotators’

disagreement as a target during training. However, while their methodology improves

on the baseline, showing the importance of uncertainty-aware models, it is dependent

on individual annotations being available.

Several works have addressed the issue of uncertainty when multiple annotations of a
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given sample are available. Using a Gaussian process classification approach has been

proven to outperform other approaches (e.g., majority voting) in multiple domains [98,

75]. These works explicitly handle uncertainty arising from annotators’ disagreement.

Similarly, ensemble architectures that model each annotator and implement decision-

level fusion [47] for each sample show improvements against the baseline. However, such

approaches require a large number of annotations per sample to model the annotation

distribution and guarantee it is representative. By explicitly handling the uncertainty

in Gaussian processes, the network learns the annotator’s disagreement rather than

the sample ambiguity. Furthermore, the latter approach of ensembles from individual

annotator models does not provide sufficient information on the sample’s uncertainty.

2.3 Learning Representations and Label Relations

In human affect problems and even more in mental state estimation, learning features

representative of the behaviour rather than other entangled factors (e.g. identity) is

paramount to the reliability of the final estimate. A number of works have addressed the

issue of representation learning, with more recent developments in contrastive method-

ologies [27, 26], whether evaluating results on static image data or video datasets [94].

These self-supervised methodologies learn latent representations by teaching the archi-

tecture which data points are similar. By extending the idea of comparing samples,

supervised contrastive frameworks propose that images [59] or videos [51] from the

same class are treated as similar, which results in embeddings from the same class

being more closely aligned. However, these works are trained on very large datasets

which are not typically available for affective and mental health problems and have only

been evaluated on classification problems. Kim et al. [60] implement an adversarial loss

to learn better representations for continuous affect; however, arousal/valence values

are binarised for the adversarial task. In our work, we explore the idea of learning

representations by comparing sample similarities in a supervised approach; however,

we implement a non-binary approach, which is more suitable for multi-label regression
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problems.

Several problems/datasets in the field of continuous affect and mental health have

multiple labels in order to describe various affective attributes and psychological symp-

toms. Treating each label independently [31] ignores their potential correlations as well

as increases training times significantly with each additional label. Several works in-

vestigate multi-label recognition problems using graph learning approaches to model

label correlations and co-occurrences [119, 70]. However, such approaches do not learn

from label similarities between samples and do not project these similarities to the lat-

ent representation space. In contrast, our work uses information from the inter-sample

label similarities to learn better latent representations.

2.4 Addressing large sequences

The exploration of methods tailored to long-range video understanding is vital for hu-

man affect and mental state estimation, as long videos are typically more representative

of real-life settings. Moreover, long temporal relationships intuitively should contrib-

ute to more accurate estimates of human affect and mental states. To address long

video sequences, previous works have used a number of strategies. One such method

is to pre-compute features [66, 15]; this, however, does not allow for end-to-end train-

ing and makes augmentation techniques more complicated (if feasible at all). Another

strategy to address long video sequences is by using contextual features either in the

form of intra-sample relations [138] or by exploring feature banks [122]. Both of these

approaches utilise relations between the short-term actions, which is the temporal con-

text of a clip. However, these methods have been evaluated on action recognition

problems and have not been implemented in affect. Moreover, while action problems

benefit from long-term context, they still have a much lower label resolution. Finally,

when using feature banks context, features need to be pre-computed on pre-defined

clips; therefore, feature quality does not improve with further training.
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In our work, we build on the concept of exploiting contextual features; however,

differently from [122], we use context features to improve clip-level prediction with end-

to-end training. We also do not operate on pre-defined clips but rather dynamically

compute features from them – with this approach, as training progresses, the network

learns from better context features.

2.5 Vision and Language Models

The use of large contrastive pre-training for Vision-Language Models (VLM) has be-

come popular, as these models have demonstrated impressive generalisation capab-

ilities [95, 53, 137, 2]. As large VLM require large amounts of data and very high

computational resources to achieve those results, the latest research on VLM has been

mostly concentrated on three paths: (a) latent space manipulation, (b) leveraging pre-

trained spatial features and fine-tuning a temporal module for video input, and (c)

prompt learning.

Menon & Vondrick [82] use an ensemble of prompts generated by Large Language

Models (LLMs) containing descriptive features of each class and show significant im-

provements in terms of accuracy as well as explainability of decisions. Ouali et al. [87]

propose a method for latent space feature alignment in a target domain without the

need for additional training. Similarly, Bain et al. [8] propose several methods for

temporal pooling of frames, using pre-trained VLMs with very little or no additional

training. Such approaches, although effective, use no information from the temporal

dimension in the video, which is essential in human FER to understand macro and

micro-expressions.

Large VLMs trained on static images have been used for video classification, partic-

ularly for action recognition. Lin et al. [72] propose using a lightweight Transformer

Decoder over the CLIP [95] spatial features for downstream classification. Similarly,

ActionCLIP [118] class labels are used for natural language supervision; therefore, in

21



2.5. Vision and Language Models

both approaches, the open vocabulary capabilities are lost. CLIP [95] has been used

as a backbone in several video captioning works [78, 127, 79]. However, none of these

works has been evaluated or trained on the domain of FER, where the behaviour is, in

general, not as clearly defined.

To overcome the challenges of prompt engineering in VLMs, some works propose

learning a set of tokens [140, 139, 88] to append to the class name, which can im-

prove performance as the text-encoder acts more like a bag of words [132, 7]. Natural

language supervision for facial expression recognition (FER) is a relatively unexplored

idea, but there have been some preliminary works exploring this approach. For in-

stance, CLIPER [67] has proposed prompt learning to improve closed dictionary FER.

However, these tokens are class-specific and cannot be used in open dictionary settings

for zero-shot classification.

Several works [9, 93, 125, 126] have proposed zero-shot frameworks for emotion re-

cognition or emotional response recognition [134] by aligning class name embeddings to

multi-media embeddings and then evaluating the method on unseen emotions. These

methods, however, still rely on the use of hard labels and simpler class prototype embed-

dings (such as word2vec). As such, they do not take into consideration the intra-class

differences or the underlying concepts in each class and do not capture semantically

rich information in the latent representations.

Natural language supervision is not a new idea; however, data and hardware con-

straints only recently showed the impressive generalisation capabilities of VLM models.

In the domain of human affect, we can make two main observations on the bibliography:

a) there are very few works attempting zero-shot FER, and b) none of the methodo-

logies using natural language supervision are evaluated on in-the-wild FER tasks. As

such, we can conclude that there is a significant research gap on VLM models for human

affect. In addition, as coarse categorisation of emotions can often be subjective and

show large intra-class variation, emotional prototypes fail to capture more fine-grained
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Table 2.1: List of Datasets Used in this Thesis

Name of the dataset Size Type Available Annotation Form of collection
AffectNet 1,000,000 Images Arousal-Valence, Categorical Emotions Wild
AFEW 1,809 Videos Categorical Emotions Wild
AMIGOS 40 Participants Videos Arousal-Valence Laboratory controlled
DFEW 16,000 Videos Categorical Emotions Wild
FERV39K 39,000 Videos Categorical Emotions Wild
OMG Emotion Dataset 7371 utterances Videos Arousal-Valence, Categorical Emotions Wild
MAFW 10,000 Videos Categorical Emotions Wild
NESS 69 Participants Videos Symptoms of Schizophrenia (Continuous) Wild

emotional categories.

2.6 Datasets

A table of the affective datasets used in this thesis can be found in Tab. 2.1. The

datasets used in this thesis, are chosen based on the experimental set-up of each chapter

and to allow for a fair comparison with previous works in each task.
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Chapter 3

Label Uncertainty in Human

Affect

Chapter Abstract

As discussed in Chapter 1 of this thesis, we begin by addressing problems in con-

tinuous labels and, more specifically, directly addressing label noise in continuous

affect. Continuous affect estimation is a problem where there is inherent un-

certainty and subjectivity in the labels that accompany data samples – typically,

datasets use the average of multiple annotations or self-reporting to obtain ground

truth labels. In this chapter, we propose a method for uncertainty-aware continu-

ous affect estimation that explicitly models the uncertainty of the ground truth

label as a univariate Gaussian with a mean equal to the ground truth label and

unknown variance. For each sample, the proposed neural network estimates the

value of the target label (valence and arousal in our case) and the variance. The

network is trained with a loss defined as the KL divergence between the estimation

(valence/arousal) and the Gaussian around the ground truth. We show that, in

two affect recognition problems with real data, the estimated variances are cor-

related with measures of uncertainty/error in the labels extracted by considering
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multiple annotations of the data or by manually cleaning the dataset.1
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3.1 Introduction

Affect recognition in the wild is a problem that traditionally uses the labels assigned

by expert annotators or self-reporting as the ground truth. Even though the labels

obtained in that manner are not as noisy as, for example, through social media scraping,

there is an inherent element of subjectivity in the annotation that can be regarded as

noise or bias. This subjectivity in available affect datasets can have an effect on the

generalisation and interpretability of results.

In recent years, several works have attempted to address label uncertainty. Di-

videMix [69] introduces a methodology for training on noisy labels by leveraging a

semi-supervised technique. The method simultaneously trains two networks and uses

the per-sample training loss to co-divide the data into a clean- and a noisy-label subset.

However, the methodology proposes a hard label correction by assigning pseudo-labels

on noisy samples during training and requires co-training of two networks. In the re-

gression framework, He et al. [50] model the difficulty in predicting object boundaries

in object detection by estimating the uncertainty in predicting the bounding box in the

form of variance and introducing a Kullback-Leibler (KL) based loss term that allows

the estimation of the variance for each predicted boundary. However, none of the above
1Portions of this chapter are published: N. M. Foteinopoulou, C. Tzelepis, and I. Patras, ‘Es-

timating continuous affect with label uncertainty’, in 2021 9th International Conference on Affective
Computing and Intelligent Interaction (ACII)
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have been introduced in the domain of affective computing for continuous arousal and

valence estimation.

In this work, we adopt a similar approach and build on the work of He et al. [50] in

order to address the problem of label uncertainty in the domain of affective comput-

ing. We address the problem of affect estimation as a regression problem predicting

a continuous value for arousal and valence. We propose to estimate the uncertainty

of the label for each sample in the form of variance so that the model estimates both

the target and the label variance. By contrast to approaches such as DivideMix [69]

that model the distribution of the loss over multiple samples and make a hard decision

between which samples are noisy and clean, our measure is continuous and is derived

per sample by a branch of the network. Our network is trained on a KL-divergence-

based loss using standard back-propagation. We evaluate the methodology on two

continuous affect datasets, namely AMIGOS [83] for video affect estimation and Af-

fectNet [84] for affect estimation in static images. We show that the derived measure

is positively correlated to the variance of annotators in AMIGOS where multiple an-

notations are available. In AffectNet, where multiple annotations are not available, we

use the rules proposed by [112] to obtain a clean and a noisy validation set and show

that the estimated variances in the clean subset are lower than in the noisy one by per-

forming a statistical significance test. Finally, we show that the proposed methodology

consistently improves the performance in both datasets against their baselines.

The main contributions of this Chapter can be summarised as follows:

1. We propose addressing the problem of continuous affect estimation with label

uncertainty by modelling the ground truth label as a univariate Gaussian distri-

bution with unknown variance and training a network that learns to predict it.

To the best of our knowledge, this is the first work doing so in this domain.

2. We show that the proposed methodology improves the performance upon the
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adopted baselines on both image and video data affect recognition problems.

3. We quantitatively evaluate the predicted variance metric as a measure of un-

certainty and show that it is positively correlated with the variance of multiple

human annotators in AMIGOS and higher in part of AffectNet that were deemed

to contain noisy samples.

The Chapter is organised as follows. Section 3.2 introduces our methodology, Sec-

tion 4.3 introduces the experimental setup, Section 4.4 reports the results, and Sec-

tion 5.5 concludes the Chapter.

Figure 3.1: Proposed method overview: A backbone convolutional neural network is
applied to input images in order to extract features which are subsequently used by
two MLP heads in order to predict a) the variance σ2 (top branch) and b) the mean µ̂
(bottom branch) of the annotation y ∼ N

(
µ, σ2

)
for a given training sample. A KL-

divergence loss function is then used to measure the difference between the Gaussian
distribution f(y;µ, σ2) and the Dirac delta distribution δ(µ− µ̂).

3.2 Methodology

In tasks where multiple annotations per sample are available (specifically in emotion

and affect recognition), majority voting or averaging over the given multiple labels ap-

proaches are typically followed in order to obtain a single ground truth label per sample.

Such methods, however, neglect the uncertainty that is inherent in such annotations

and that are introduced by multiple, usually disagreeing, annotators. Furthermore,

multiple annotations per sample are not always available, making methodologies that

explicitly handle label uncertainty in the data not applicable. In this section, we present

our method for a) modelling the aforementioned uncertainty in the given annotations

and b) using it in order to predict both the (ground truth) mean value of the label and
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its (unknown) variance. By doing so, we expect to estimate an interpretable metric

for label uncertainty and improve the performance of affect estimation. An overview

of the proposed method is shown in Fig. 3.1.

3.2.1 Ground truth uncertainty estimation

We begin by modelling the ground truth annotations as a set of independent uni-variate

Gaussian distributions, for which we are given the true mean values (ground truth),

and we try to predict both the mean values and the corresponding variances. More

specifically, let y ∼ N
(
µ, σ2

)
denote an annotation label (e.g., the value of arousal

for a given sample) with true mean value µ and unknown variance σ2. For doing so,

we jointly optimise a convolutional feature extractor backbone network and two MLP

“heads”, one predicting the mean and the other predicting the variance of the respective

Gaussian, as shown in Fig. 3.1.

We achieve this by optimising a KL-divergence based loss function, LKL, which

measures the difference between the predicted Gaussian, which is uniquely expressed

by its true mean µ and the predicted variance σ2 and its density is given by f(y;µ, σ2),

and a Dirac delta distribution centred at the predicted mean value µ̂, with density

given by δ(µ− µ̂) (see Fig. 3.1).

It is worth noting that, in order to impose positivity on the predicted variance and

avoid exploding gradients, we implicitly predict its Napierian logarithm, s = log σ2,

and use it as exp(s) = σ2, as we will show below. That is, as shown in Fig. 3.1, the

top MLP predicts the logarithm of σ2.

We note that KL-divergence is a distribution-wise asymmetric measure, which does

not satisfy the triangle inequality and thus cannot serve as a true metric function.

However, it is widely used for measuring the dissimilarity between statistical distribu-

tions [50, 124]. For instance, He et al. [50] incorporate a similar KL-divergence-based

loss function for measuring the distance between a uni-variate Gaussian and a Dirac
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delta distribution.

By following similar arguments as in [50], we introduce a KL-divergence-based loss

function given by

LKL =
(µ− µ̂)2

2σ2
+

log σ2

2
, (3.1)

when |µ− µ̂| ≤ 1, and by

LKL =
1

σ2

(
|µ− µ̂| − 1

2

)
+ log σ2, (3.2)

when |µ− µ̂| > 1. That is, in the cases where the predicted mean values are far from

their true values (typically during the early training process), we use the latter modified

smooth L1 loss term shown in (3.2), while after achieving certain convergence we use

the former fine-grained and uncertainty-aware loss term (3.1).

We note that in contrast to [50] that model their regression predictions as uni-variate

Gaussians and optimise their variances, we, instead, predict the variance of the ground

truth values for our regression task. This reflects the intuition that affect labelling is

prone to noise. The proposed loss takes into account the estimated variances of labels,

unlike other losses traditionally used for regression problems (e.g. Mean Absolute Error

or Mean Squared Error); for more ambiguous or noisy samples, we expect the model

to estimate a higher variance.

3.2.2 Architectures

As discussed in the previous sections, in this work, we address the problem of data un-

certainty on continuous affect estimation from both static images and videos. For affect

estimation from static images, we set the general architecture presented in Fig. 3.1 so as

the backbone feature extractor is implemented by a CNN architecture. More specific-

ally, we have experimented with both VGG16 [106] and ResNet [49] architectures (see

Fig. 3.2); however, the proposed methodology can be implemented on any appropriate

network, as described in the previous section.
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Figure 3.2: Residual CNN backbone architecture for extracting features from static
images.

In the case of continuous affect estimation on untrimmed videos, our basic architec-

ture (Fig. 3.1) is set so that video features are obtained using a CNN with a trainable

NetVLAD [6] layer, as shown in Fig. 3.3. The NetVLAD architecture [6] is inspired

by the Vector of Locally Aggregated Descriptors (VLAD), which is a pooling method

that captures information about the statistics of local descriptors over the image, by

storing the sum of residuals from cluster centres.

More specifically, the NetVLAD introduced in [6] can update the cluster centres

during training; therefore, the layer can be introduced as a pooling layer in a standard

convolutional architecture. The original NetVLAD layer is used to generate a K ×D

vector from a W ×H ×D convolutional output, where K is the number of centroids

to be used in the VLAD vectors, D is the number of channels of the last convolutional

layer, and (W,H) are the spatial dimensions of the convolutional output, as shown in

Fig. 3.3.

In this work, we modify the NetVLAD layer architecture to perform pooling along

the temporal dimension instead of the spatial. The input to the network is a set of pre-

computed features obtained during pre-training from each video frame. The network

then performs convolutional and average pooling operations followed by ReLU activa-
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tion across the temporal dimension and then uses the NetVLAD layer as a pooling layer

to standardise the feature vector size. The proposed architecture using NetVLAD offers

certain advantages; more specifically, it allows for the use of untrimmed video input

and can handle longer sequences. It also offers a good performance versus simplicity

trade-off.

Figure 3.3: Video input architecture: Given an untrimmed video with t number of
frames, we extract a vector of Action Units (AUs) per frame in the preprocessing
phase. The AU time series is then used to train the NetVLAD architecture along with
our uncertainty-aware regressor.

3.3 Experimental Setup

3.3.1 Datasets

AMIGOS The AMIGOS dataset [83] consists of audio-visual and physiological re-

sponses of participants (either alone or in a group) to a video stimulus. In this work,

we use the responses of individuals; 40 participants watched sixteen short videos and

four long ones. The former are defined as videos with length in the 50-150 second

range. The responses are broken down to 20-second intervals and annotated by three

annotators for arousal and valence on a scale from −1 to 1. We extracted the frames

from the video with a framerate of 25 frames/sec and calculated the average score of

the three annotators as the ground truth during training for the video segment. During

testing, we use the variance of the annotators as an indication of uncertain or ambigu-

ous samples and calculate the Pearson’s Correlation Coefficient (PCC) between the

estimated and the annotator’s variance.
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Figure 3.4: Histogram of annotators’ variance in the AMIGOS dataset for arousal and
valence.

As the individual annotator scores are available, we calculate the correlation matrices

for arousal and valence as an indication of Inter-Annotator Agreement (IAA) in con-

tinuous affect estimation, as shown in Table 3.1. The correlations in the table indicate

that there is disagreement between the annotators, particularly for arousal. A higher

disagreement among annotators will introduce higher label uncertainty as it is an in-

dication of the sample’s ambiguity. By examining the histogram of variances of the

available annotations in Fig. 3.4, we can see that while most samples will have low

disagreement and thus low uncertainty, there is a significant number of samples with

higher variance, particularly for arousal. There are multiple reasons for the annotat-

ors’ disagreement in this and other datasets, however, we can summarise them along

three pillars: (a) scale ambiguity, (b) sample ambiguity and (c) experimental set-up.

The scale ambiguity refers to how arousal and valence are defined, which is introduced

in Chapter 1 and further elaborated throughout the thesis. In a nutshell, they refer

to continuous metrics with no absolute reference and are, therefore, open to inter-

pretation. The principle has been extensively explored in previous works, where the

label ambiguity is addressed directly by converting the regression problem to a ranking

problem [131]. The sample ambiguity refers to noise in the input that may affect the

perception of apparent emotion (by either humans or machines). An example of this

could be an expression typically associated with happiness (e.g. smiling) compounded
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Table 3.1: Correlation Coefficient of Annotators Scores for Arousal and Valence in the
AMIGOS dataset

Arousal Valence
#1 #2 #3 #1 #2 #3

#1 1 0.54 0.62 1 0.7 0.73
#2 0.54 1 0.51 0.7 1 0.63
#3 0.62 0.51 1 0.73 0.63 1

with an expression typically associated with contempt (e.g. unilaterally raised brow).

The perceived apparent emotion could then be different between annotators, where

we see disagreement even among trained experts [11]. Finally, the experimental setup

(that is, how the dataset was collected) could affect label noise. Given that the data-

set measures a subject’s response to a stimulus, the affective range is expected to be

smaller than when subjects actively take action. This results in more subtle differ-

ences between data points that are harder for annotators to distinguish, particularly

for arousal, which is, in essence, measuring the level of excitement.

AffectNet AffectNet [84] consists of more than one million facial images collected

from the Internet. Approximately 440,000 are annotated manually for categorical emo-

tions and continuous arousal and valence. In this work, we use the manually annotated

samples of the eight emotion categories, namely, Neutral, Happy, Sad, Surprise, Fear,

Disgust, Anger, and Contempt, which include over 290,000 samples. Annotations from

multiple annotators are not provided in the dataset.

3.3.2 Performance Measures

The performance of the proposed methodology and the baselines is assessed using

three evaluation metrics, depending on the database. For experiments conducted on

the AMIGOS database [83], we report the Mean Square Error (MSE):

MSE =
1

n

n∑
i=1

(µi − µ̂i)
2 , (3.3)

where n is the number of videos in the database, µi is the ground truth and µ̂i is

the predicted value, as discussed in Sect. 3.2. To better assess the performance of the
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regression task and to guarantee that results are comparable with other methods that

apply transformations on the labels, we use Pearson’s Correlation Coefficient (PCC),

which for a pair of variables x, y with means x̄, ȳ is given by

PCC =

∑n
i=1 (xi − x̄i) (yi − ȳi)√∑n
i=1 (xi − x̄i)

2 (yi − ȳi)
2
∈ [−1, 1] (3.4)

The above equation is used to evaluate both the performance of the regression when

predicting the level of arousal/valence and the quality of the learnt variance, where a

PCC close to one implies a one-to-one relationship between the two variables (so in

simple terms higher is better). In addition to PCC, we also evaluate the performance

of our method in the regression task in AffectNet using the Root Mean Square Error

(RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(µi − µ̂i)
2, (3.5)

where n, µi, and µ̂i denote the number of images, the ground truth, and the predicted

value for arousal/valence, respectively.

3.3.3 Backbone and Implementation Details

Affect estimation in videos We evaluate the proposed method in the task of af-

fect estimation in untrimmed videos using the AMIGOS [83] dataset. For this, we

use ResNet50 as a backbone architecture (Fig. 3.2), which we have pre-trained on the

CelebA [74] and the EmotioNet [13] datasets for the task of Action Units (AUs) re-

cognition [35]. We use this pre-trained backbone in our preprocessing phase (Fig. 3.1)

in order to extract features. Therefore, the input to the model is a time series of

ten AUs per video segment. The AUs-based features extracted by the backbone are

then used to train a simple CNN architecture using a NetVLAD [6] layer to produce a

fixed-dimensional feature vector that is then fed forward to the regression and variance

estimation fully connected (FC) layers, as shown in Fig. 3.3. We chose a trainable

NetVLAD layer as a baseline since it offers a low simplicity-vs-performance trade-off.

The 1D convolutional and average pooling layers are set with a kernel size of 7 and
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stride 5 and the same number of channels according to the input. As we do not down-

sample frames in the video sequence, we assume neighbouring frames will have similar

values and, therefore, implement a larger kernel and stride. The NetVLAD layer is ini-

tialised with eight centroids. The training is performed in an end-to-end manner, and

we follow a leave-one-subject-out cross-validation protocol for each subject in the indi-

vidual database until the network converges. The network is trained using an ADAM

optimiser with an initial learning rate of 0.01 multiplied by a factor of 0.1 every 100

epochs and a batch size of 512 on two NVIDIA RTX 2080 GPUs.

Affect estimation in static images In the case of affect estimation in static images,

we evaluate the proposed method using both the VGG16 [106] and the ResNet50 [49]

architectures as a backbone (Fig. 3.2), in order to assess the effect of the variance

prediction and KL divergence loss. We also train a ResNet18 network and initialise

convolutional layers with weights pre-trained on ImageNet. All networks are trained

using Stochastic Gradient Descent (SGD) optimisation, with an initial learning rate of

0.0001 multiplied by 0.8 after 100 epochs and a batch size of 128 until convergence.

3.4 Results and Discussion

In order to assess the impact of the learned variances, we compare them with the cor-

responding variances induced by annotators’ disagreement – when multiple annotators’

scores are available, we can estimate uncertainty in the form of variance between an-

notators’ scores. We propose to evaluate the learned variances against the annotator’s

variances at test time. It is worth noting that, unlike [98, 75, 28, 48], we do not use

the annotator’s variance in the training phase as a target, but instead we learn each

annotation’s variance from input and evaluate in the test phase.

Table 3.2: PCC of learned variance and annotators variance on AMIGOS dataset

Arousal Valence
Proposed method 0.34 0.31
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In the AMIGOS dataset, we use the PCC, given by (4.3), to calculate the correlation

between the learned and the annotators’ variances, and we show the results in Table 3.2.

We observe a higher PCC for arousal, which also had a lower IAA, as seen in Table 3.1.

This is an indication of the model’s understanding of ambiguity. Examples of clips

with low and high predicted variance from the AMIGOS dataset are shown in Fig. 3.5.
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Figure 3.5: Examples of clips with low predicted variance (left – annotators assess-
ments: 0.36, 0.12, 0.14) and high predicted variance (right – annotators assessments:
0.77, 0.21, 0.49) from a given subject.

In order to split the evaluation set of AffectNet into a clean and a noisy subset, we

follow the rules proposed in [112]. That is, we split the evaluation set based on the

categorical and continuous affect labels since multiple annotations per sample are not

available. More specifically, for each sample in the evaluation set, we compare the cat-

egorical emotions to their theoretical equivalent in the arousal-valence circumplex and

ensure that the assigned label for arousal and valence is in agreement with the arousal

and valence of the categorical emotions. For example, a sample with the assigned emo-

tion “Happy” in the categorical model but negative arousal would be excluded from the

clean set. Examples from the two subsets can be seen in Fig. 3.7. In the top row, we

show examples where the categorical emotion is consistent with the continuous arousal

and valence, while in the bottom row, examples of noisy samples are presented. In

total, 141 samples are flagged as noisy.
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Figure 3.6: Examples of samples with clean (top) and noisy (bottom) labels. Top –
from left to right, the assigned labels are: “Contempt, Arousal: 0.65, Valence:-0.65”,
“Fear, Arousal: 0.53, Valence: -0.06”, “Sad, Arousal: -0.24, Valence: -0.66”. Bottom
– from left to right the assigned labels are: “Fear, Arousal: -0.32, Valence: -0.08”,
“Neutral, Arousal: -0.23, Valence: -0.37”, “Neutral, Arousal: -0.29, Valence: 0.36”.

We then estimate the variance for each sample in the subsets and compare the hypo-

thesised population variances using a student t-test. The resulting average predicted

variance for each subset is shown in Table 3.3. The estimated variances are obtained

using the ResNet18 architecture initialised with ImageNet weights. Assuming the null

Table 3.3: Mean estimated variance for Arousal and Valence on AffectNet subsets. As
the scale of the variance is small, results are shown in three significant figures.

Samples Arousal(std) Valence(std)
AffectNet clean 3858 0.078(0.003) 0.079(0.004)
AffectNet noisy 141 0.082(0.003) 0.087(0.002)

hypothesis H0 : σclean = σnoisy and the alternative hypothesis H1 : σclean < σnoisy, we

perform a one-tailed Student’s t-test. We compute t as follows

t =
x̂1 − x̂2√
s21
n1

+
s22
n2

, (3.6)

where xi and si represent the means and variances of the two samples, respectively,

and ni is the respective sample size. With the values from Table 3.3, t is estimated

at −0.91 and −1.96 for arousal and valence, respectively. The calculated p values

with 139 degrees of freedom for arousal and valence are 0.18 and 0.025, respectively.
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Therefore, we can reject the null hypothesis for valence at a 95% confidence interval

but not for arousal. As the use of C.I. is dependent on both the problem and how much

uncertainty is acceptable for it, we want to note that we can reject the null hypothesis

for arousal with a lower C.I. of 80%. While the use of a lower C.I. is atypical for most

tests of statistical significance, we want to emphasize that, in this case, a test with lower

confidence successfully shows a relationship between estimated variance and label noise.

The weak relationship, shown by accepting the null hypothesis with lower C.I., is also

a testament to the difficulty of the problem, as well as evidence of other entangled

factors affecting label noise. The distributions of the estimated uncertainty for the two

subsets are shown in Fig. 3.7. In the plotted distributions, we can visually confirm

the differences between the estimated uncertainty for arousal and valence between the

sets. While there are some overlapping areas between the distribution of estimated

variances of the clean and noisy sets, the mean of the distribution is higher for the

noisy set on both targets. It is worth noting that, as we can see in Table 3.3, the

noisy subset is much smaller than the clean one. The subset sizes are important in

statistical tests, as they can affect confidence intervals or not be representative of the

population. However, as a rule of thumb, sample sizes of 100 are expected to give

statistically significant results [61, 45]. With this in mind, and assuming there are no

statistical errors in sampling, which we would expect from a large enough dataset, we

can conclude that the results with 139 degrees of freedom can be accepted as robust.

Arousal Valence

Figure 3.7: Distribution of the estimated uncertainty in Arousal (left) and Valence
(right) for clean (blue) and noisy (red) labels in AffectNet.

In order to evaluate the proposed methodology and the impact of predicting variance

on the overall model performance, we compare the architectures against their baseline
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Table 3.4: Results on AffectNet using VGG16 and ResNet backbones

Arousal Valence
RMSE PCC RMSE PCC

wideResNet 0.35 0.54 0.40 0.60
wideResNet proposed 0.35 0.55 0.41 0.61
VGG16 0.35 0.54 0.39 0.62
VGG16 proposed 0.34 0.55 0.40 0.62
ResNet18 (pre-trained) 0.34 0.55 0.40 0.62
ResNet18 (pre-trained) 0.35 0.57 0.39 0.63
proposed

trained without variance prediction and an MSE loss. The results for AffectNet and

AMIGOS are shown in Tables 3.4 and 3.5, respectively. We can see that the improve-

ment in terms of PCC is consistent with estimation from both static image input and

time-series input. In the AffectNet (static images), we have experimented with three

different backbone architectures, namely VGG16 [106] and two variants of ResNet [49],

obtaining consistent improvements in terms of the PCC. The architectures tested are

simple uni-modal feed-forward networks as we aim to demonstrate the impact of un-

certainty prediction. A higher predicted variance for an uncertain sample allows the

network to learn from less ambiguous samples as the optimiser will prioritise lowering

the |µ−µ̂| term in (3.1) and (3.2). Furthermore, by penalising the regression prediction

less for uncertain samples, the predicted variance regularises the error.

Finally, for reference, we note that the results on AMIGOS align with previous work

from [85], although not directly comparable, as different features and architectures are

used. Specifically, in [85] Quantised Local Zernike Moments (QLZM) computed from

the per frame facial landmarks were used to train an SVR and an LSTM architecture.

In contrast, in our case, we used a simple frame-based estimation of a set of Facial

Action Units. Moreover, while there are some methodological parallels between the

NetVLAD architecture used and Fisher Vectors of QLZM used to train the SVR,

recurrent methodologies better capture the temporal dimension of features, which is

significant in continuous affect. The SVR architecture in [85] achieves a PCC of
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Table 3.5: Results on AMIGOS using precomputed per frame Facial Action Units as
input and a NetVLAD architecture.

Arousal Valence
MSE (std) PCC MSE (std) PCC

NetVLAD 0.03 (3e−3) 0.50 0.02 (2e−3) 0.47
NetVLAD 0.04(6e−3) 0.53 0.02(2e−3) 0.52
proposed

0.34 for both arousal and valence, while the LSTM architecture achieves 0.6 and 0.62,

respectively.

3.5 Conclusion

Continuous affect estimation is an inherently uncertain problem due to the subjective

and ambiguous nature of continuous labels. We have proposed estimating the level of

continuous affect along with a certainty metric that represents the true variance in the

label distribution of continuous arousal and valence. The methodology is inspired by

work on other domains with label uncertainty, such as bounding box regression, but to

our knowledge, this is the first work addressing the problem in affective computing by

treating the ground truth as a Gaussian distribution and the predicted level of affect

as a Dirac delta function. We evaluate our methodology on two datasets, AMIGOS

[83] and AffectNet[84] for affect estimation from video and static images, respectively

and find that it improves upon the baselines for all architectures tested. We also

evaluate the learned uncertainty metric by comparing the learned variance against the

annotators’ variance when multiple annotations per sample are available. We find a

positive correlation between the estimated uncertainty and the disagreement between

annotators. When multiple annotations are not available, we compare the distribution

of the predicted variance on clean and noisy evaluation subsets and find the estimated

uncertainty in the clean set lower using a statistical test. The proposed methodology

offers a measure for label uncertainty in continuous affect recognition.
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Chapter 4

Label Relationships in Human

Affect and Mental State

Estimation

Chapter Abstract

In this second methodological chapter, we continue addressing human affect as a

continuous task along the arousal-valence axis and extend the methodology to the

task of schizophrenia symptom estimation. Human affect and mental state es-

timation in an automated manner face several difficulties, including learning from

labels with poor or no temporal resolution, learning from few datasets with little

data (often due to confidentiality constraints) and (very) long, in-the-wild videos.

For these reasons, deep learning methodologies tend to overfit and arrive at latent

representations with poor generalisation performance on the final regression task.

To overcome this, in this chapter, we introduce two complementary contributions.

First, we present a novel relational loss for multilabel regression and ordinal prob-

lems that regularises learning and leads to better generalisation. The proposed

loss uses label vector inter-relational information to learn better latent representa-
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tions by aligning batch label distances to the distances in the latent feature space.

Second, we utilise a two-stage attention architecture that estimates a target for

each clip by using features from the neighbouring clips as temporal context. We

evaluate the proposed methodology on both continuous affect and schizophrenia

severity estimation problems, as there are methodological and contextual parallels

between the two. Experimental results demonstrate that the proposed method-

ology outperforms the baselines trained using the supervised regression loss and

pre-training the network architecture with an unsupervised contrastive loss. In

schizophrenia symptom estimation, the proposed methodology outperforms previ-

ous state-of-the-art by a large margin, achieving a PCC of up to 78%, performance

close to that of human experts (85%) and much higher than previous works (uplift

of up to 40%). In the case of affect recognition, we outperform previous vision-

based methods in terms of CCC on both the OMG and the AMIGOS datasets.

Specifically for AMIGOS, we outperform previous SoTA CCC for both arousal

and valence by 9% and 13%, respectively. In the OMG dataset, we outperform

previous vision works by up to 5% for both arousal and valence. 1
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4.1 Introduction

Understanding human affect and mental state is an active research area with multiple

potential applications spanning fields such as education [128], healthcare [107], and

entertainment [80, 102]. For example, by understanding human emotion, the user
1Portions of this chapter are published: N. M. Foteinopoulou and I. Patras, ‘Learning from La-

bel Relationships in Human Affect’, in Proceedings of the 30th ACM International Conference on
Multimedia, Lisboa Portugal: ACM, Oct. 2022, pp. 80–89
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Regression Head

Regression Loss

Batch

Labels

Clip Labels

Figure 4.1: Preview of the proposed framework; the main contributions of this work
are: (a)A two-stage architecture that uses features from the clip’s neighbourhood to
introduce context information in the feature extraction and (b) a novel relational re-
gression loss that aims at learning from the label relationships of the samples during
training

experience can be enhanced, and healthcare professionals can more effectively monitor

the patient’s emotional state. These problems can be treated either as a classification,

using the basic human emotions [35] or by utilising continuous labels along the Arousal-

Valence axes [99]. Similarly, in the domain of mental illness, several scales have been

used by healthcare professionals to assess the severity of the symptoms, thus treating

symptoms as a spectrum [5].

Regardless of which of the above labelling approaches is adopted, certain issues render

the problem of human affect and mental state estimation challenging. Specifically, in-

the-wild datasets tend to include long videos with low or no temporal label resolution –

i.e., a set of labels describes the entire video. This typically occurs as affect and mental

health symptom labels refer to abstract behaviour that is not easily captured and is not
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always objectively defined. The length of the video poses a major difficulty for Machine

Learning methods due to GPU memory constraints. To address this issue, two main

approaches are employed in the literature, namely, a) estimating sub-segments of the

long videos [22, 76] and b) pre-computing features[136, 130, 17, 85]. For example, in

MIMAMO [31] and the work of Peng et al. [89] a small number of frames is sampled

from each clip. However, this disregards information from the remaining video and

the clip context. Moreover, as affect and mental state descriptions often refer to a

larger context, short clips might not be representative samples. Similarly, estimating

per-frame predictions [81] disregards clip information and is also suffering from the

lack of temporal information. Previous state-of-the-art works in symptom severity

estimation [15] used statistical representations, such as Gaussian Mixture Models, on

a set of per-frame extracted features. However, this approach does not learn from the

temporal relationships of frame features. It also does not allow for end-to-end training

and, therefore, does not allow for feature optimisation on the specific task. In order to

exploit contextual information and improve clip-level features, Wu et al. [122] proposed

the use of Long-Term Feature Banks for the problem of action recognition in videos.

However, Long-Term Feature Banks [122] rely on a pre-computed set of features for

the context that does not improve in quality during training. By contrast, in this work,

we build upon [122] and use a context feature extractor that updates context features

at each iteration, allowing for dynamically computing context features of random clips

sampled from a longer video in an end-to-end manner, leading to much shorter training

times.

Publicly available datasets for affect and mental health analysis are typically small,

which often results in overfitting problems during training. As such, methods that

lead to better representations with a small number of samples are paramount to the

success of the final regression task. However, several recent works [59, 27, 51, 19]

require pre-training (whether supervised or unsupervised) with very large datasets to

achieve better representations before fine-tuning on the final task. In continuous affect
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estimation, Kim et al. [60] binarised labels and used an adversarial loss on the latent

feature space; however, this approach ignores the continuous nature of Arousal/Valence

dimensions.

In order to both alleviate the challenges due to long video input and to improve

the feature representations so as to address the multi-label regression problems that

arise in the domain of affect and mental health analysis, in this work, we propose

a) a novel attention-based video-clip encoder that builds upon [122] and utilises the

temporal dimension of the input clips and arrives at clip-level predictions that benefit

from context clip information, and b) a novel relational regression loss function that

aligns the distances in the latent clip-level representations/features to the distances of

the labels of the clips in question. An overview of the proposed framework is shown in

Fig. 4.1. Specifically, we propose to jointly train two network branches: a) one that uses

the proposed video-clip encoder to extract clip-level features from the input video clips

and a set of temporally neighbouring clips, which subsequently feed a regression head

in order to infer the desired values and calculate the regression loss, and b) one that

uses the proposed video-clip encoder to extract clip-level features from the input video

clips, which subsequently feeds the regression head and are further used to construct

the intra-batch similarity matrix for calculating the proposed relational loss. To the

best of our knowledge, this is the first work that uses label relationships to improve

feature representation learning. The proposed regression head employs an attention-

based mechanism for fusing clip-level and context features and regressing to the desired

continuous values. The main contributions of this Chapter can be summarised as

follows:

• We build on [122] and propose a two-stage attention architecture that uses fea-

tures from the clips’ neighbourhood to introduce context information in the fea-

ture extraction. The architecture is novel in the domain of affect and mental

state analysis and, unlike [122], it does not train a separate model to compute
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Figure 4.2: Overview of the proposed framework: (a) The bottom branch uses the
proposed video-clip encoder (comprising of a ResNet frame-level and a Transformer
clip-level feature extractors) to extract clip-level features from the input video clips,
which subsequently feed the context-based attention block and are further used to
construct the intra-batch similarity matrix for calculating the proposed relational loss.
(b) The upper branch uses the proposed video-clip encoder to extract clip-level features
from the input video clips and a set of context clips from each of the input clips, which
subsequently feed the context-based attention block in order to infer the desired values
and calculate the regression loss. The context-based attention block fuses clip-level and
context features and passes the context-attended clip features to the regression head
that estimates the desired continuous values. Error is back-propagated only through
the shaded region of the bottom branch.

context features but rather updates its weights during training – this leads to

shorter training times.

• We introduce a novel loss, named relational regression loss, that aims at learning

from the label relationships of the samples during training. This loss uses the

distance between label vectors to learn intra-batch latent representation similar-

ities in a supervised manner. We show in the ablation studies that the improved

latent representations obtained with the addition of the relational loss lead to

improved regression output without the use of large datasets.

• We show that the methodology achieves results comparable to the state-of-the-

art. Specifically, for symptom severity estimation of schizophrenia, our methodo-

logy outperforms the previous state of the art on all scales and symptoms tested

and achieves a Pearson’s Correlation Coefficient similar to that of human experts.
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4.2 Proposed method

An overview of the proposed framework for the problem of multi-label regression from

a sequence of clips is given in Fig. 5.1. In a nutshell, the proposed architecture con-

sists of two branches with shared weights that incorporate two main components: a) a

video-clip encoder employing a convolutional backbone network for frame-level feature

extraction and b) a Transformer-based network leveraging the temporal relationships

of the spatial features for clip-level feature extraction (Sect. 4.2.1). The clip and con-

text features produced by the aforementioned branches are passed to a context-based

attention block (Sect. 4.2.2) and a regression head (Sect. 4.2.3). The proposed method

uses the context-based attention block to incorporate features from the two branches

before passing them to the regression head, as shown in Fig. 5.1. The bottom branch

uses the proposed video-clip encoder to extract clip-level features from the input video

clips, which subsequently feed the context-based attention block and are further used

to construct the intra-batch similarity matrix for calculating the proposed relational

loss (Sect. 4.2.4). The goal of the proposed relational loss, as an additional auxiliary

task to the main regression, is to obtain a more discriminative set of latent clip-level

features by aligning the label distances in the mini-batch to the latent feature distances.

Finally, the upper branch uses the proposed video-clip encoder to extract clip-level fea-

tures from the input video clips and a set of context clips from each of the input clips,

which subsequently feed the regression head in order to infer the desired values and

calculate the regression loss.

4.2.1 Video-clip encoder

Let X be a batch of labelled clips designed so as it contains consecutive clips taken from

different video sequences; i.e., X = {(Xi,yi)}Bi=1, where Xi ∈ RT×H×W×3 denotes the

i-th clip in the mini-batch, T denotes its duration in frames, H,W denote the frame

height and width, yi = (y1, . . . , yC) ∈ RC denotes the corresponding ground truth label

vector with continuous annotation for C classes, and B denotes the mini-batch size.

47



4.2. Proposed method

Given an input clip Xi, the proposed video-clip encoder extracts frame-level fea-

tures by feeding them to a backbone convolutional network (e.g., a ResNet [49]),

which subsequently feeds a Transformer-based network for extracting clip-level fea-

tures, leveraging this way the temporal relationships of the calculated spatial features.

In the proposed framework, we use the above video-clip encoder in both branches

as shown in Fig. 5.1 – i.e., for calculating the clip-level features z0i ∈ RD for the

input clips Xi, i = 1, . . . , B (bottom branch) and for calculating clip-level features

Zi =
(
z−K
i , . . . , z0i , . . . z

K
i

)
∈ R(2K+1)×D from each Xi along with a number K of

context clips before and after it (upper branch).

4.2.2 Context-based Attention

As discussed above, for any given clip Xi and 2K context clips around it, the proposed

video-clip encoders extract the clip-level features z0i ∈ RD (corresponding to the input

clip Xi alone) and Zi =
(
z−K
i , . . . , z0i , . . . z

K
i

)
∈ R(2K+1)×D (corresponding to the

input clip Xi and K clips before and K clips after it). These features are then fed to

the regression head (Fig. 5.1), where they are first passed through an attention module

before being concatenated. The resulting context-attended clip features are passed to

the regression head for the final regression task.

4.2.3 Multi-label regression head

The context-attended clip features obtained through staged attention, as explained

in the previous sections, is passed through an MLP regression head that predicts the

regression values ŷi = (ŷ1i , . . . , ŷ
C
i ), i = 1, . . . , C. Finally, we calculate the regression

loss Lreg by either using the Root Mean Square Error (RMSE) or the Concordance

Correlation Coefficient (CCC), depending on the task at hand, as we will discuss in

Sect. 4.3.
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4.2.4 Relational loss

At each training iteration, after having calculated (as discussed in Sect. 4.2.1) the clip-

level features for the clips in a mini-batch, i.e., z0i ∈ RD, i = 1, . . . , B, we calculate the

proposed relational loss as follows:

Lrel =

√√√√ 1

B2

B∑
i=1

B∑
j=1

(
M̂i,j −Mi,j

)2
(4.1)

where M̂ ∈ RB×B denotes the cosine similarity matrix calculated on the clip-level

features, whose (i, j)-th element is given as

M̂i,j =
z0i · z0j

∥z0i ∥∥z0j∥
,

and M ∈ RB×B denotes the cosine similarity matrix calculated on the ground truth

labels, whose (i, j)-th element is given as

Mi,j =
yi · yj

∥yi∥∥yj∥
.

It is worth noting that, for the calculation of the proposed relational loss, we use

the clip-level features from the given clips without using any context clips, in contrast

to the regression loss where additional context clips are being used, as discussed in

Sect. 4.2.3. The total loss is then calculated as Ltotal = Lreg + λLrel, where λ is a

weighting hyper-parameter which we discuss in Sect. 4.3.

4.2.5 Implementation details

Backbone frame-level feature extractor

We use a standard ResNet50 [49] pre-trained on VGGFace2 [21] and fine-tuned on

FER2013 [44] as described in [3]. The classification layer of the pre-trained network

was replaced with a fully connected (FC) layer that was fine-tuned for our task during

the training of the network, followed by a ReLU [43] activation. The adopted backbone

network receives an input of shape H ×W × 3, where H,W are the height and width
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of the input frame, respectively, and are set to 224 pixels, and outputs a feature vector

with 2048 dimensions for each frame. The per-frame feature vectors are stacked to a

matrix of size T × 2048 for each clip, where T is the number of frames of each input

clip.

Transformer neck clip-level feature extractor

A transformer encoder architecture is employed to learn from the temporal relation-

ships of the spatial feature vectors calculated by the convolutional frame-level feature

extractor. The T × 2048 features are positionally encoded and fed forward to a Trans-

former Encoder [116]. An element-wise addition is performed between the transformer

encoder output and the frame-level features, followed by an average pooling operation

along the temporal dimension, resulting in a D-dimensional clip-level representation,

where D = 2048.

Context-base Attention

For each input clip Xi, the regression head takes as input both the clip-level features

z0i ∈ RD and the stacked context features Zi =
(
z−K
i , . . . , z0i , . . . z

K
i

)
∈ R(2K+1)×D

(Sect. 4.2.1). A modified non-local block [122] is then used as an attention operation,

where clip-level features z0i are used as the query values to attend to features in Zi,

which are used as keys and values. The output context attention vector is concatenated

with the clip-level features, resulting in a 2×D dimensional vector.

Regression head

The penultimate feature vector is obtained by passing the context-attended feature

vector through an FC layer followed by a ReLU activation and a dropout layer.

Finally, in order to obtain the final regression predictions, we split the aforementioned

penultimate feature vector into C subsets and attach an FC layer to each subset to

obtain the final regression predictions. In the case of continuous affect estimation, we
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set C = 2 (i.e., for Arousal/Valence estimation), while for the schizophrenia symptom

severity estimation, we set C accordingly to the number of symptoms provided by the

scale at hand. Specifically, the CAINS-EXP scale has 4 symptoms in total; therefore,

we set C = 4. The PANSS Negative scale has 7 symptoms in total, however, we select

3 for comparison with previous works [15, 115]. As the PANSS-NEG scale includes a

number of symptoms we do not consider, we add an additional subset in the penultimate

feature vector so that C = 4, which is only considered in the total score estimation. We

note that, in the case of symptom severity estimation, additionally to each individual

symptom prediction, we predict a total score (by using an additional FC layer) using

the entire aforementioned penultimate feature vector. This is in contrast to [15], where

the total score is estimated using the individual symptom scores.

4.3 Experimental setup

4.3.1 Datasets

NESS: The dataset was originally collected to study the effect of group body psycho-

therapy on negative symptoms of schizophrenia [91]. The participants in this study

were recruited from mental health services from different parts of the UK. In total, 275

participants were interviewed at three different stages of the study: a) a baseline, b)

at the end of the treatment, and c) after six months. Each clinical interview recording

is between 40 and 120 minutes long and is performed in the wild, reflecting this way

the conditions of real-life clinical interviews. Each interview is assessed in terms of two

symptom scales, namely, PANSS [55] and CAINS [40]. Out of the total 275 patients,

110 were accepted to be recorded at baseline, 93 at the end of treatment, and 69 in the

six-month follow-up. The videos in the dataset were recorded at various resolutions

and frames per second. However, we standardised the resolution to 1920 × 1080 and

fps to 25 frames/s for all videos, and we discarded videos where a face was not detected

on more than 10% of the frames. Training and evaluation were performed on videos
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recorded at baseline for a fair comparison with works in the literature, i.e., 113 videos

for 69 patients. All results reported on this dataset are based on a leave-one-patient-

out cross-validation scheme, where videos were down-sampled to 3 fps. The values for

“Total Negative” and “EXP - Total” in the PANSS and the CAINS scales, respectively,

were scaled during training to match the range of individual symptoms (i.e., 1-7 for

PANSS and 0-4 for CAINS).

OMG: The “OMG-Emotion Dataset” [10] consists of in-the-wild videos of recorded

monologues and acting auditions collected from YouTube. Multiple annotators separ-

ated each clip into utterances and assigned labels for Arousal in the [0, 1] scale and

Valence in the [−1, 1] scale. The dataset originally consisted of training, validation,

and test sets with a total of 7371 utterances. As a number of videos have been removed

since the publication of the dataset, we trained on 2071 and evaluated 1663 utterances.

We also scaled Arousal to [−1, 1] to match the range of Valence during training and

inference.

AMIGOS: The AMIGOS dataset [83] consists of audio-visual and physiological

responses of participants (either alone or in a group) to a video stimulus. In this

work, we used the responses of individuals, i.e., where 40 participants watched 16 short

videos and 4 long ones. The former were defined as videos of 50-150 seconds. The

responses were broken down to 20-second intervals and annotated by three annotators

for Arousal and Valence on a [−1, 1] scale. We extracted the frames from the video (6

frames/s) and calculated the average score of the three annotators as the ground truth

during training for the video segment. We trained the network following a leave-one-

subject-out cross-validation scheme. At each fold, we randomly selected a subset of

the training data, corresponding to 20% of samples. This is to show how the relational

loss can achieve state-of-the-art results using a much smaller number of samples than

conventional supervised methodologies.
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Table 4.1: Performance (CCC) of the proposed method against baseline and other uni-
modal architectures (OMG).

Arousal Valence
Proposed 0.26 0.48
Proposed w/o K 0.29 0.46
Proposed w/o K w/o Lrel 0.24 0.44
Proposed w/ Lcont. 0.15 0.32
Peng et al. [89] 0.24 0.43
Kollias and Zafeiriou [63] 0.13 0.40
CNN-3RNN [64] (trained from scratch) 0.19 0.39
CNN-3RNN [64] (pre-trained on Affwild2 [62]) 0.33 0.47

4.3.2 Augmentation

During training, we applied data augmentation to the spatial dimensions of all datasets.

Specifically, we randomly changed the contrast, saturation, and hue of frames with a

factor of 0.2, and we applied random horizontal flipping and random rotations (with

a range of 30◦). The same set of transformations was applied to all frames within a

clip. Moreover, as clips with temporal length T were selected from a larger video, we

considered the clipping along the temporal dimension as an augmentation approach.

More specifically, from the video sequence, we selected a random initial frame and

selected T consecutive frames to form a clip. Similarly, the context clips were defined

as clips with T number of frames positioned before and after the current clip in the

video sequence. We looped the video if the initial frame selected did not allow us to

define a complete clip. The number of frames T was set to 32 for the experiments

conducted on the NESS and 16 for the experiments conducted on the OMG and the

AMIGOS datasets.

Table 4.2: Effect of number of frames T in terms of CCC (OMG).

Arousal Valence Mean
T = 8 0.25 0.41 0.33
T = 16 0.26 0.49 0.38
T = 32 0.19 0.40 0.30
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4.3.3 Training

During training, the hyperparameter λ that scales the relational loss was empirically

set to 2 for experiments conducted on the NESS and the AMIGOS datasets and to

1 for experiments conducted on the OMG dataset. During testing, the clips were

generated by a sliding window over the video sequence, resulting in non-overlapping

clips; the average prediction of all clips in the video was calculated to estimate the final

predicted label vector. The network was trained in an end-to-end manner with a batch

size of 4, 8, and 16 for the NESS, the OMG, and the AMIGOS datasets, respectively,

keeping the pre-trained weights of the ResNet-50 backbone frozen. We used an Adam

optimizer with an initial learning rate of 10−4, multiplied by 0.1 every 5 epochs, and

weight decay 5 · 10−3. The hyperparameter K that controls the context window size

was set to 2 for the experiments on the NESS and to 1 for the experiments on the

OMG and the AMIGOS datasets. The network incorporated an RMSE loss during

training for the experiments conducted on the NESS and (1-CCC) for the experiments

on the OMG and AMIGOS datasets, as proposed by previous works in continuous

affect [112, 31].

4.3.4 Architecture Complexity

The proposed architecture has 90M trainable parameters, distributed as 4M in the

backbone, 52M in the transformer neck and 33M in the context-aware attention and

regression head. We note that even though the architecture uses two branches (one

for clip-level features and one for context features), the two branches share weights,

which significantly reduces the number of parameters. We also note that similarly to

other state-of-the-art methods [31, 63], we use a ResNet50 as our backbone network,

but in contrast to them that employ an RNN architecture to explore the temporal

relationships, we instead use a Transformer Encoder module. As shown in [116], the

self-attention layers of the Transformer are both faster and less complex than recurrent

layers (RNN) when the sequence length is shorter than the feature dimensionality,
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which is the case in the current architecture. Hence, the proposed method is more

efficient than RNN-based two-stream methods. We report that the inference time is,

on average, 28.6ms (±2ms) for a clip prediction.

4.3.5 Performance Metrics

In order to assess the performance of the proposed method against the baselines and the

state-of-the-art, we used the following four evaluation metrics, following the common

practice in the related literature [15, 10, 85]. More specifically, for the experiments

performed on the NESS dataset, we used the Mean Absolute Error (MAE), the RMSE

and Pearson’s Correlation Coefficient (PCC), which are given as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi|, RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2, (4.2)

where n, yi, and ŷi denote the number of samples, the ground truth, and the predicted

value for each label, respectively. To guarantee that reported results are comparable

with other methods that apply transformations on the labels, we used Pearson’s Cor-

relation Coefficient (PCC), which for a pair of variables x, y with means x̄, ȳ is given

by

PCC =

∑n
i=1 (xi − x̄i) (yi − ȳi)√∑n
i=1 (xi − x̄i)

2 (yi − ȳi)
2
∈ [−1, 1] (4.3)

For the experiments evaluated on the OMG and AMIGOS datasets, we used the Con-

cordance Correlation Coefficient (CCC) as an evaluation metric. The CCC for sets

Y = {y1, . . . , yn} and Ŷ = {ŷ1, . . . , ŷn}, representing the ground truth and predicted

values, is defined as:

CCCY,Ŷ =
2ρY,Ŷ σY σŶ

σ2
Y + σ2

Ŷ
+
(
µY − µŶ

)2 ∈ [−1, 1], (4.4)

where µY and µŶ denote the means, σ2
Y and σ2

Ŷ
denote the variances of the variables Y

and Ŷ , respectively, and ρY,Ŷ denotes the Pearson’s correlation between the variables Y

and Ŷ . Both eq. 4.3 and 4.4 show a high positive correlation when they approximate
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Figure 4.3: Scaled “Total Score” estimations of the proposed method on NESS using
(a) CAINS and (b) PANSS scales.

(i.e. in the context of this work, higher values are better), while eq. 4.2 should be

minimised.

4.4 Results and Discussion

In this section, we present the experimental evaluation of the proposed framework. We

begin with our ablation study in Sect. 4.4.1 in order to demonstrate the effectiveness

of our method with respect to various design options. Then, in Sect. 4.4.2, we present

comparisons with state-of-the-art methods, where we show that the proposed method

achieves results comparable to the state-of-the-art – specifically, for symptom severity

estimation of schizophrenia; our method outperforms the previous state-of-the-art on

all scales and symptoms tested and achieves a Pearson’s Correlation Coefficient similar

to that of human experts.
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Input Clip

Arousal Valence

Arousal Valence

Figure 4.4: Examples of input clips, their context, and proposed method output on
the AMIGOS [83] dataset: In the top row our method predicted A:−0.22, V:−0.12
(ground truth: A:−0.42, V:−0.12), and in the bottom row A:−0.29, V:−0.03 (ground
truth: A:−0.29, V:−0.04).
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4.4. Results and Discussion

4.4.1 Ablation study

In order to examine the effect of the number of frames T in the overall method, we

train the proposed methodology for T = 8, 16, 32 on the OMG and NESS datasets.

The results of the ablation on T for the OMG dataset are shown in Table 4.2; we

observe that the highest CCC for both arousal and valence is achieved when T = 16,

closely followed by T = 8. The effect of T on the PANSS-NEG scale is shown in

Table 4.5; we note that model performance is overall benefited by a larger T , with the

exception of symptom N6, which is consistent with the symptom definition (i.e., Lack

of Spontaneity and Flow in conversation, which is expected to be short-termed).

In order to investigate the effectiveness of the components of the proposed frame-

work, we conducted an ablation study where we gradually excluded the incorporation

of contextual clips and the proposed relational loss. For doing so, we trained a baseline

network without context features and trained only on the standard regression loss (i.e.,

without the proposed relational loss), which we denote as “w/o K w/o Lrel”. We also

trained a version of the network, including the context branch without the relational

loss, which we denote as “w/o Lrel”. We finally conducted an experiment using an

unsupervised contrastive pre-training, which we denote as “Lcont.”. In this scenario, we

first pre-trained the clip-level feature extraction backbone in an unsupervised contrast-

ive manner, and then we trained the regression head on top of the frozen backbone,

using the regression loss. For the unsupervised contrastive loss, we sampled 2 clips

from the same video as positive samples and considered samples from other videos as

negatives.

The analysis results on the NESS [91] dataset are shown in Tables 4.3, 4.4 for the

PANSS and CAINS scales, respectively. We see that the proposed network under the

contrastive pre-training scenario has a similar performance to experiments where we

trained with only the regression loss (shown as “w/o Lrel”) in terms of MAE/RMSE,

however in terms of PCC the non-contrastive network still outperforms the contrastive
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4.4. Results and Discussion

methodology by a large margin. We attribute this to the size of the dataset that

was required to learn discriminative features, as other unsupervised methodologies for

representation learning [27, 26, 94] trained on very large datasets such as ImageNet [32]

and Kinetics [57, 23]. Furthermore, the proposed relational clearly leads to a large

improvement in the overall regression task against the baseline and the unsupervised

contrastive loss using a small number of training samples. Contextual features also

improved the overall regression performance, particularly for the MAE/RMSE metrics,

with a more noticeable improvement in the Total Scores of the two scales.
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4.4. Results and Discussion

Table 4.8: Performance of the proposed method against baseline and other uni-modal
architectures (AMIGOS).

Arousal Valence
PCC CCC PCC CCC

Proposed 0.69 0.68 0.75 0.74
Proposed LCCC w/o K w/oLrel 0.59 0.49 0.64 0.54

Proposed LRMSE w/o K w/o Lrel 0.60 0.39 0.55 0.40
Mou et al. [85] 0.60 0.59 0.62 0.61

The results of our ablation study on the OMG dataset [10] are presented in Table 4.1.

Comparing the proposed methodology against its baseline (i.e., “w/o K w/o Lrel”), we

observe that the proposed relational loss which is the main contribution of this work

improves the performance of the regression measured in terms of CCC, for both Arousal

and Valence. Further incorporating the contextual features improved the CCC score

for Valence but slightly lowered the CCC for Arousal. The drop in arousal affects the

overall performance of the model when using K. We hypothesise that this may be due

to the nature of the collected dataset (monologues, auditions, etc.), where changes in

how calm or agitated a subject is are expected, thus making arousal short-lived, while

the overall theme (in this case, how pleasant a scene is) would remain roughly the same.

Compared to other works submitted to the challenge [63, 89], the proposed network and

specifically the use of the novel relational loss, shows a clear improvement in terms of

CCC for Valence, however [64] has the highest Arousal and overall performance on the

OMG dataset. We also observe a clear advantage of the proposed method compared

to the architecture pre-trained with contrastive loss, which appears to over-fit, and it

may be encouraging the network to learn features of the subjects’ identities rather than

affective and mental states due to the nature of the problem and database size.

4.4.2 Comparison to state-of-the-art

In this section we present the results of the proposed method against state-of-the-art

methods. The results for the NESS dataset [91] against previous works are shown in

Tables 4.6 and 4.7, for PANSS and CAINS scales, respectively. We can see that the
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4.4. Results and Discussion

proposed methodology outperforms previous works across all the evaluated symptoms

and scales by a large margin, particularly for PCC, achieving state-of-the-art results.

Since the NESS dataset has been annotated by different healthcare professionals, we can

compare the PCC achieved by the proposed method against the PCC of the annotators

(mental health experts), which has a mean value of 0.85 [17, 91] on NESS. We observe

that the proposed method achieves a PCC close to that of human experts for the “Total

Negative” and “EXP-Total” scores in this dataset. In Fig. 4.3, we show the total score

predictions for all videos for both scales in the NESS dataset. As the NESS dataset

is imbalanced, with fewer patients having severe symptoms, we observe a higher error

for patients with higher ground truth labels. Moreover, since we perform leave-one-

patient-out cross-validation, there is a chance that no examples of high total scores are

included in the training set of a given fold. This trend is consistent for both scales used

to evaluate.

For experiments conducted on the OMG dataset [10], we compared the performance

of the proposed method against other uni-modal multi-label works submitted to the

“OMG-Emotion Behavior Challenge” – we show the results in Table 4.1, where we

observe a clear improvement against previous works, for both Arousal and Valence in

terms of CCC. We note that, to our knowledge, current state-of-the-art results for the

OMG dataset are achieved by MIMAMO [31] with a CCC of 0.37 and 0.52 for Arousal

and Valence respectively. However, as MIMAMO is a multi-modal approach (using

RGB and inter-frame phase difference as input modalities) and is trained for a single

target (i.e., Arousal or Valence) at a time, the results reported in [31] are not directly

comparable to ours.

Finally, for the experiments conducted on the AMIGOS dataset [83], we compared

the performance of the proposed methodology against previous state-of-the-art [85] for

the face modality, and we show the results in Table 4.8. The proposed methodology

leads to a clear improvement against both baselines, trained with an RMSE regression
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4.5. Conclusion

loss (LRMSE) and a CCC loss (LCCC). We also outperform previous state-of-the-art

by a large margin for both Arousal and Valence, even though we trained on a subset

of the training data at each fold. It is worth noting that on the AMIGOS dataset, the

architecture that was pre-trained with a contrastive loss completely overfitted on the

regression task. Thus, we chose to exclude it from the comparison. In Fig. 4.4, we see

some visual examples of input clips, their context from the AMIGOS dataset [83] and

the proposed methodology predictions against the ground truth.

4.5 Conclusion

In this work, we presented our method for dealing with challenges that arise in the

domain of affect and mental health in multi-label regression problems. Specifically, we

built on [122] and proposed a two-stage attention architecture that uses features from

the clips’ neighbourhood to introduce context information in the feature extraction.

The architecture is novel in the domain of affect and mental state analysis and leads to

shorter training times in comparison to state-of-the-art. Furthermore, we introduced

a novel relational regression loss that aims to learn from the label relationships of the

samples during training. The proposed loss uses the distance between label vectors to

learn intra-batch latent representation similarities in a supervised manner. We showed

that the improved latent representations obtained with the addition of the relational

regression loss led to improved regression output without the use of large datasets.

Finally, we demonstrated the effectiveness of the proposed method on three datasets

for schizophrenia symptom severity estimation and for continuous affect estimation,

and we showed that our method achieves results comparable to the state-of-the-art –

specifically for symptom severity estimation of schizophrenia, our methodology outper-

forms the previous state-of-the-art on all scales and symptoms tested and achieves a

Pearson’s Correlation Coefficient similar to that of human experts.
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Chapter 5

EmoCLIP: A Vision-Language

Method for Zero-Shot Video

Facial Expression Recognition

In this final methodological chapter, we approach categorical emotions using nat-

ural language as the ground truth to address the large intra-class variation associ-

ated with coarse categorisation in the domain of human affect. Facial Expression

Recognition (FER) is a crucial task in affective computing, but its conventional

focus on the seven basic emotions limits its applicability to the complex and ex-

panding emotional spectrum. To address the issue of new and unseen emotions

present in dynamic in-the-wild FER, in this chapter, we propose a novel vision-

language model that utilises sample-level text descriptions (i.e. captions of the

context, expressions or emotional cues) as natural language supervision, aiming

to enhance the learning of rich latent representations, for zero-shot classification.

To test this, we evaluate using zero-shot classification of the model trained on

sample-level descriptions on four popular dynamic FER datasets. Our findings

show that this approach yields significant improvements compared to baseline

methods. Specifically, for zero-shot video FER, we outperform CLIP by over

10% in Weighted Average Recall and 5% in Unweighted Average Recall on sev-
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5.1. Introduction

eral datasets. Furthermore, we evaluate the representations from the network

trained using sample-level descriptions on the downstream task of mental health

symptom estimation, achieving performance comparable or superior to state-of-

the-art methods and strong agreement with human experts. Namely, we achieve

a Pearson’s Correlation Coefficient of up to 0.85, comparable to human experts’

agreement.1
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5.1 Introduction

Facial Expression Recognition (FER) is a primary task of affective computing, with

several practical applications in Human-Computer Interaction [29], education [128] and

mental health [41], among others. To formalise the spectrum of human emotions, re-

searchers have proposed several models. Ekman & Friesen [35] propose six emotions

(later seven with the addition of “contempt”) as the basis of human emotional expres-

sion. This is the most widely accepted model for FER; however, human emotional

experience is significantly more complex and varied than the seven basic categories,

with up to 27 distinct categories for emotion reported in recent studies [30]. A continu-

ous arousal-valence scale has been proposed [99] as an alternative to creating emotion

categories; however, the scale is neither objective [42] nor self-explanatory to human

readers. Therefore, as more fine-grained definitions of emotion are proposed, and the
1Portions of this chapter are published: N. M. Foteinopoulou and Ioannis Patras. “EmoCLIP: A

Vision-Language Method for Zero-Shot Video Facial Expression Recognition”, in Proceedings of the
2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG), Istanbul,
Turkiye, 2024, pp. 1-10
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5.1. Introduction

categorical models expand, there is also a need for automated systems to adjust to

new definitions, unseen emotions and mental states or compound emotions. Zero-shot

methodologies in Facial Emotion Recognition (FER) specifically tackle these challenges,

providing effective solutions to unseen emotions and mental states.

Zero-shot Learning (ZSL) is a machine learning paradigm where a model can recog-

nise and classify objects or concepts it has never been trained on by leveraging auxiliary

information or attributes associated with those unseen classes [123]. In the context of

emotion recognition, ZSL has traditionally been achieved by some label semantic em-

bedding to produce emotion prototypes, typically word2vec [134, 9]. The use of hard

labels, however, is failing to include semantically rich information in the prototypes

as well as ignoring the subtle differences in expression between subjects. Recent de-

velopments in Vision-Language Models (VLM) [95, 53, 2], using image-caption pairs

instead of hard-labels have demonstrated superior generalisation and zero-shot abilit-

ies. Furthermore, CLIP [95] has been used as the basis for several methods in action

recognition [133, 118] or video retrieval and captioning [111, 79, 129, 78]. However,

the use of VLMs in dynamic FER remains relatively unexplored. Recent preliminary

works in FER have used video-language contrastive training [67, 71], primarily relying

on class-level prompt learning. Nonetheless, this approach is akin to class supervision

and is not designed to generalise to unseen behaviours.

In this work, we propose a novel approach to zero-shot FER from video inputs by

jointly learning video and text embeddings, utilising the contrastive learning frame-

work with natural language supervision. The network architecture is simple and trains

a video and text encoder concurrently, as shown in Fig. 5.1. The text and image en-

coders are initialised by leveraging the knowledge of large-scale pre-trained CLIP [95],

as typical dynamic FER datasets do not have enough samples to train from scratch,

and we train an additional temporal module from scratch, similar to previous works in

action recognition [72, 118]. Contrary to previous VLM or ZSL works in emotion recog-
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5.1. Introduction

nition [9, 134, 67, 71] we use sample-level descriptions during training i.e. captions of

the subject’s facial expression and context, available in the MAFW [73] dataset. These

act as soft labels and aim to achieve more semantically rich latent representations of

the video samples. Then, during inference, we use class-level descriptions for each emo-

tion. Specifically, we generate descriptions of each emotion in relation to the typical

facial expressions associated with it. In the case of compound emotions, we propose

manipulating the latent representation of the categories’ descriptions in the embedding

space rather than creating additional prompts. Specifically, as compound emotions are

combinations of basic emotions, we propose averaging the embeddings of the compon-

ents and adding them to the set of embeddings for each additional compound emotion.

We show that the proposed methodology trained on sample-level descriptions shows

generalisation capabilities invariant to domain shift as we perform zero-shot evaluation

on multiple datasets. We also show that compared to the CLIP and FaRL baselines,

the temporal information and domain-specific knowledge of the sample-level descrip-

tions improve the zero-shot performance of FER. Finally, to show the generalisation

ability of the representations we obtain from the video encoder, we adapt them to the

domain of mental health. Using a simple MLP, trained in a fully supervised manner, we

achieve results comparable to or outperforming previous state-of-the-art on estimating

non-verbal symptoms of schizophrenia. We see a significant improvement compared

to previous works, particularly on symptoms associated with affect and expression of

emotions as well as total negative score, which is similar to human experts.

Our main contributions can be summarised as follows:

• This chapter introduces a novel zero-shot Facial Emotion Recognition (FER)

paradigm from video input, employing sample-level descriptions and a dynamic

model. This straightforward approach, which leverages CLIP [95], outperforms

class-level descriptions and significantly improves zero-shot classification perform-

ance, particularly for under-represented emotions.
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5.2. Methodology

• We propose a novel method for representing compound emotions using average

latent representations of basic emotions instead of concatenating or generating

new prompts. This approach is more intuitive and efficient than prompt engin-

eering and shows significant improvements across all metrics compared to prompt

concatenation.

• Our proposed method, EmoCLIP, trained on the MAFW [73] dataset and evalu-

ated on popular video FER datasets (AFEW [33], DFEW [54], FERV39K [120],

and MAFW), achieves state-of-the-art performance on ZSL. Additionally, we

evaluate the embeddings of the video encoder of EmoCLIP on the downstream

task of schizophrenia symptom estimation using the NESS dataset [92]. We

achieve results comparable to or better than previous state-of-the-art methods

and comparable to human experts with a simple 2-layer MLP.

The remainder of this Chapter is organised as follows. Section 5.2 introduces our meth-

odology, Section 5.3 reports the results on the tasks of zero-shot FER for simple and

compound emotions, and the downstream task of schizophrenia symptom estimation,

and Section 5.5 concludes the Chapter.

5.2 Methodology

An overview of the proposed method can be seen in Fig. 5.1. In a nutshell, we follow the

CLIP [95] contrastive training paradigm to optimise a video and a text encoder jointly.

The video and text encoders of the network are jointly trained using a contrastive

loss over the cosine similarities of the video-text pairings in the mini-batch. More

specifically, the video encoder (EV ) is composed of the CLIP image encoder (EI)

and a Transformer Encoder to learn the temporal relationships of the frame spatial

representations. The text encoder (ET ) used in our approach is the CLIP text encoder.

The weights of the image and text encoders in our model are initialised using the

large pre-trained weights of CLIP [95] and finetuned on the target domain, as FER
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Figure 5.1: Overview of our method, EmoCLIP. During training (a), we use joint
training to optimise the cosine similarity of video-text embedding pairs in the mini-
batch. Sample-specific descriptions of the subject’s facial expressions are used to train
the model. During inference (b), we perform zero-shot classification using class-level
descriptions for each of the emotion categories.

datasets are not large enough to train a VLM from scratch with adequate generalisation.

Contrary to the previous video, VLM works in both action recognition [118, 72] and

FER [67, 71], we propose using sample level descriptions for better representation

learning, rather than embeddings of class prototypes. This leads to more semantically

rich representations, which in turn allows for better generalisation.

We describe how we train the proposed method for dynamic FER in Section 5.2.1,

and how we use it at inference time for simple and compound emotions in Section 5.2.3

5.2.1 Architecture and Training

The CLIP framework, proposed by Radford et al. [95], operates as a contrastive multi-

modal system, encoding image and text features into a shared space and maximising

the cosine similarity of matching image-text pairs (positives) while minimising the

similarity of all other pairs (negatives) by optimising a cross-entropy loss over the

similarity pairs. We adopt the framework in the dynamic paradigm by introducing a

transformer encoder over the spatial features to learn from the temporal dimension.

More specifically, we utilise two separate encoders for processing video and text in-
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puts. Given a video-text pair x = {xV , xT }, we obtain the video-text embeddings using

the respective encoders so that zV = EV (x
V ) and zT = ET (x

T ), where zV , zT ∈ RD.

The video and text embeddings, zV and zT , respectively, obtained for each image-text

pair in the mini-batch B, are utilised to generate a B×B matrix of cosine similarities.

The diagonal elements of the matrix correspond to the B positive pairings, while the

remaining elements represent B2 − B negative pairings. A cross-entropy loss is em-

ployed to maximise the similarity between the positives on the diagonal and minimise

the similarity of the negatives.

The video encoder architecture is relatively simple and similar to architectures pro-

posed for video captioning [79, 111]. Specifically, (EV ) is composed of the CLIP image

encoder (EI) that extracts frame-level features, which are then fed to a two-layer trans-

former encoder that acts as a temporal encoder. The state of the learnable classification

token at the output of the transformer is used as the video embedding zV .

While the encoders EV , ET could be trained from scratch given a sufficiently large

dataset of video-caption pairs, in the domain of FER, the only available dataset with

such annotations is the MAFW [73] dataset, which is relatively small. To this end, we

leverage the pre-trained CLIP [95] image and text encoders to initialise the weights of

EI and ET in our architecture and fine-tune on the FER domain.

5.2.2 Inference

During inference, the cosine similarity of text and image embedding in the joined

latent space is used as the basis for the classification. The prediction probability is

then defined as:

P (y = i|x) = e⟨z
V ,zTi ⟩/τ∑N

j=1 e
⟨zV ,zTj ⟩/τ

, (5.1)

where τ is a learnable temperature parameter in CLIP and ⟨·, ·⟩ is the cosine similarity.
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5.2.3 Class Descriptions

In the case of basic emotions, we provide class descriptions in the form of natural

language obtained from LLMs, rather than using a prompt in the form of ‘an expression

of {emotion}’, to match the information-rich sample level descriptions. We note that

these are different descriptions than the ones used during training, as in the latter, we

use sample-level video-text pairs, as can be seen in Fig. 5.1. As such, our method is

performing zero-shot classification during inference. Specifically, to obtain the class-

level descriptions, we prompt ChatGPT with the input:

Q: What are the facial expressions associated with {emotion}?

Class Name Description

anger A facial expression showing irritation and unrest,
with a wrinkled forehead, narrowed eyes, and tight lips or a frown

disgust An expression of repulsion and displeasure, with a raised upper lip,
a scrunched nose, and a downturned mouth

fear
An expression of tension and withdrawal, with wide-open eyes,

raised eyebrows, and a slightly open mouth. The face may appear physically
tense or frozen in fear

happiness
An expression of contentment and pleasure, with a smile and

the corners of the mouth turned up, often accompanied by crinkling around the eyes.
The face may appear relaxed and at ease

neutral An expression of calm and neutrality, with a neutral mouth and no particular
indication of emotion. The eyebrows are usually not raised or furrowed

sadness
An expression of sadness and sorrow, with a downturned mouth or frown,

and sometimes tears or a tightness around the eyes.
The face may appear physically withdrawn or resigned

surprise
An expression of shock and astonishment, with wide-open eyes

and raised eyebrows, sometimes accompanied by a gasp
or an open mouth

contempt An expression of disdain and superiority, with a slight smirk or sneer,
often accompanied by a raised eyebrow or a lopsided smile

anxiety
An expression of worry and apprehension, with furrowed eyebrows

and a tight mouth. The eyes may appear wide and darting,
and the face may appear physically tense or worried

helplessness
An expression of defeat and resignation, with the eyes looking down

and the mouth turned down. The eyebrows may be furrowed,
and the face may appear resigned or resigned

disappointment
An expression of frustration and disillusionment, with a slight frown

or drooping of the mouth. The eyebrows may be lowered
or furrowed, and the face may appear physically drawn or tired

Table 5.1: Class descriptions for each emotion used during inference

We then curate the generated responses to exclude irrelevant information, such as

body pose or emotional cues (such as “a sad expression” for helplessness). For example,

“A facial expression showing irritation and unrest, with a wrinkled forehead, narrowed
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eyes, and tight lips or a frown” is the generated description for “anger”. Examples of

prompts can be seen in Fig. 5.1 & 5.2; the full set of class descriptions is given in

Table 5.1.

The MAFW [73] dataset does not include sample-level descriptions for the neutral

category; as such, we generate descriptions for neutral samples by randomly selecting

and concatenating two prompts generated from ChatGPT for the neutral category.

The full list of prompts generated for the category can be seen in Table. 5.2.

Neutral Category Description Components
A lack of emotional expression, as if the person’s face is in a resting state.

The facial muscles are generally relaxed, creating a smooth and even appearance.
The mouth is typically closed or slightly open, with the lips not turned up or down.

The eyebrows are in a neutral position, not furrowed or raised, and the eyes are generally
looking straight ahead or slightly down.

While the face may not show any specific emotions, the expression can still convey a sense of
attentiveness or alertness.

Table 5.2: Descriptions used for neutral category samples during training

This strategy is proposed over the prompt templates used in CLIP [95], as the prompt

in the form of ‘an expression of {emotion}’ would imply a universal definition for

each emotion, that the text encoder has learnt along with the underlying behaviours

and facial expressions associated with each emotion. Additionally, while the CLIP

prompts have shown impressive results on clearly defined objects in images, emotions

are significantly more vague with large intra-class variation and open to interpretation,

both in terms of expression and understanding. Finally, the use of LLM, in this case,

ChatGPT, over hand-crafted prompts is proposed to avoid introducing the authors’

bias in the prompts.

Compound emotions are a complex combination of basic emotions, such as “happily

surprised” [30, 73], that are used to identify a wider range of human facial expressions.

As, by definition, compound emotions are combinations of basic emotions; we propose

a new approach to constructing the latent zT representation. Instead of treating them

as independent emotional states and creating additional prompts, we use the pre-

normalised latent representations of the components to compose the new compound
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Figure 5.2: EmoCLIP manipulates the latent space of basic emotions to create rep-
resentations for compound emotions. We take the average latent representation of the
components and concatenate it to the set of representations for each new compound
emotion.

emotion as shown in Fig. 5.2.

Formally, for any new compound emotion, we calculate its latent representation zTn

as the average of the latent representations of its C component emotions so that:

zTn =
1

C

C∑
c=0

zTc (5.2)

The resulting vector representations are then concatenated to the set of class repres-

entations. For the final classification, the cosine similarity between the class (basic and

compound) and video embeddings is calculated as described in Section 5.2.2.

5.3 Experimental Results

In this section, we present the experimental set-up (Section 5.3.1), the ablation study

(Section 5.3.2), and the experimental evaluation of the proposed framework in the

Zero-Shot paradigm (Section 5.3.3) as well as the Downstream task of schizophrenia

symptom estimation (Section 5.3.4).
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5.3.1 Experimental Setup

Datasets: We train on the MAFW [73] dataset, as to our knowledge, it is the only

FER dataset that includes sample-level descriptions of the facial expression without

explicitly mentioning emotion. The dataset contains 10k audio-video clips with cat-

egorical annotations for 11 emotions, accompanied by short descriptions of facial ex-

pressions in two languages, English and Mandarin Chinese. The dataset is divided into

five folds for evaluation. In this work, we use the English descriptions.

We evaluate our method on three additional FER datasets on the seven basic emo-

tions. The AFEW [33] dataset contains 1,809 clips from movies, divided into three

subsets. We train the method from scratch and report results on the validation set.

DFEW [54] is composed of 16,000 videos from movies, split into five folds for cross-

validation. FERV39K [120] is a large dataset with around 39,000 clips annotated by

30 annotators, and we report results on the test set.

Finally, we evaluate the video encoder of EmoCLIP as trained on the MAFW data-

set, on the downstream task of schizophrenia symptom estimation using a subset of

the NESS[92] dataset, as described in [15, 41]. The subset includes 113 in-the-wild

baseline clinical interviews from 69 patients and two symptom scales, PANSS[55] and

CAINS[40]. To ensure a fair comparison with previous works, we used leave-one-

patient-out cross-validation. The values of “Total Negative” and “EXP - Total” in

PANSS and CAINS scales, respectively, were scaled during training to match the range

of individual symptoms. Metrics: For the evaluation, we use Unweighted Average Re-

call (UAR), also known as balanced accuracy, and Weighted Average Recall (WAR),

which is equivalent to accuracy and are given by eq. 5.3 and 5.4 respectively:

UAR =
1

|C|

|C|∑
c=0

TPc

TPc + FNc
(5.3)

WAR =
TP + TN

TP + TN + FP + FN
(5.4)
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where C is the set of classes and TP, TN,FP, FN refer to True Positive, True Negative,

False Positive and False Negative respectively. For the compound expressions, we also

use the F1 score defined in eq. 5.5(also known as the harmonic mean between precision

and recall) and the Area Under the ROC Curve (AUC):

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(5.5)

For all metrics, a higher value indicates a better model performance. For ease of

reading, we present all UAR/WAR values multiplied by 100.

Training Details: The CLIP image encoders used in all experiments have a ViT-

B/32 architecture. During training, we apply augmentation to the spatial dimensions

of the video inputs for all datasets. Specifically, we apply a random horizontal flip to all

frames in a sequence with a probability of 50%. We also apply a random rotation with

a range of 6°and random centre crop. In the temporal dimension, we empirically trim

all videos to T = 32 number of frames and downsample by a factor of 4 (which results

in the entire video being included for the majority of samples). As the NESS dataset

contains significantly longer sequences, during inference, we average the prediction of

all the clips as described in [41].

We use a Stochastic Gradient Descent Optimiser (SGD) with a learning rate of 10−3

for all experiments. We finetune the pre-trained parameters of the CLIP backbone

using a different learning rate of 10−6 for the image and text encoders.

5.3.2 Ablation Study

In order to examine the effect of different components of EmoCLIP and evaluate the

prompting strategy used in this work, we perform several experiments using baseline

CLIP and our proposed method, EmoCLIP. More specifically, as discussed in the Meth-

odology Section 5.2, during inference, we use class descriptions generated with the help

of ChatGPT; this is different to the prompt ensemble of Radford et al. [95] who use

several prompt templates in the form of ‘an expression of {emotion}’ and average their
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Mode Architecture Contrastive Pre-training UAR WAR

Supervised

C3D [73] - 31.17 42.25
Resnet18_LSTM [73] - 28.08 39.38
VIT_LSTM [73] - 32.67 45.56
C3D_LSTM [73] - 29.75 43.76
T-ESFL [73] - 33.28 48.18
EmoCLIP (LP) - 30.26 44.23
EmoCLIP (Frozen backbone) MAFW [class descriptions] 34.24 41.46

Zero-shot

CLIP [95] Laion-400m 20.40 21.16.
FaRL - ViT-B/16 [137] Laion Face-20M 14.07 7.70
EmoCLIP MAFW [sample descriptions] 25.86 33.49

Table 5.3: Performance of the proposed method on the MAFW [73] dataset on 11-class
single expression classification against other SOTA architectures in a supervised and
zero-shot setting.

latent representation vectors during inference. Furthermore, as CLIP [95] is a static

model, we conduct two zero-shot evaluation strategies, first on the middle frame and

then by averaging the latent representations of all frames, i.e. performing frame en-

semble. To further show the necessity for a temporal layer, we finetune a CLIP [95]

architecture on the MAFW [73] dataset using frame ensembling, which has a negat-

ive effect on CLIP’s performance on FER. We theorise that frame ensembling in FER

tasks negatively affects training as averaging out frame representations in most cases

will consider noisy and keyframes equally, thus muddling the video latent features [68],

which confuses the network.

The proposed architecture, which incorporates a temporal layer, has significant per-

formance improvements compared to the baseline CLIP architectures. Finally, we

compare the performance of EmoCLIP with a frozen backbone to that of our proposed

method. The results of the ablation study can be seen in Tab. 5.5. As the prompt

templates used in CLIP [95] are similar to the format “A photo of class name”, they

are more suitable for static images rather than video. This is corroborated by the per-

formance of the CLIP [95] baseline using prompt ensemble vs our class descriptions.

Additionally, as emotional expression is not static, we also observe an increase in the

baseline performance using frame ensembling compared to evaluating on the middle
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frame. Such an outcome is intuitive as dynamic FER has a wider temporal context

that needs to be considered rather than a single frame. Furthermore, the temporal

relationships between frames hold important information in FER tasks. The proposed

architecture, including a temporal module, offers a large increase in performance for

both Weighted Average Recall (WAR) and Unweighted Average Recall (UAR). By fine-

tuning the backbone to the FER domain, we see a further increase in performance by

approximately 2% for each metric.

5.3.3 Zero-Shot Evaluation

To evaluate the effectiveness of the proposed method, we compare it with pre-trained

CLIP [95] and FaRL [137] models in a Zero-shot setting. As both of these methodolo-

gies are trained on static images, we take the average of the latent representations of

all frames in a video to compute the video embedding and calculate the cosine simil-

arity with the text embeddings. We show the performance of our method against the

CLIP and FaRL baselines, with a frozen CLIP backbone and the finetuned image-text

encoders on the 11 class classification of MAFW [73] in Table 5.3. We note that even

though FaRL [137] is trained on a subset of the Laion dataset [101] filtered to include

samples of faces, the model trained on FaRL performs significantly worse than both

the CLIP baseline and our proposed method. We also note that the FaRL pre-trained

weights are only available for the ViT-B/16 architecture, which may explain the dif-

ference in performance. Furthermore, while FaRL is trained with image-text pairs of

faces, these are not necessarily related to facial expression, so we hypothesise that the

FaRL embedding space is significantly more niche compared to CLIP but not in a

direction that is beneficial for zero-shot FER.

To further investigate the improvement of our method vs baseline CLIP, we use PCA

to reduce the high-dimensional latent image vectors to three dimensions (which explain

approximately 70% of the variance) and plot them in a 3D scatter plot, as shown in

Fig. 5.3. We see that by fine-tuning to the FER domain, the categorical emotions
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form more distinct clusters than in CLIP, which is also reflected in the classification

performance of our method.

For reference, we also train our architecture with class-level descriptions, and using

an MLP head with two fully connected layers (Linear probe shown as LP on the table)

over the EmoCLIP video encoder, we show the performance against several supervised

architectures as reported in [73]. We see that the architecture trained using the class

descriptions outperforms previous methods in terms of UAR and is comparable with

others in terms of WAR. These results indicate that the contrastive vision-language

approach leads to more semantically rich and discriminating latent representations,

even in a supervised setting. The difference in the two metrics is somewhat expected,

as FER datasets are typically imbalanced.

Mode Architecture Repr. Avg UAR WAR F1 AUC

Supervised

C3D [73] - 9.51 28.12 6.73 74.54
Resnet18_LSTM [73] - 6.93 26.6 5.56 68.86
VIT_LSTM [73] - 8.72 32.24 7.59 75.33
C3D_LSTM [73] - 7.34 28.19 5.67 65.65
T-ESFL [73] - 9.15 34.35 7.18 75.63

Zero-shot

Random - 2.38 7.72 0.34 50.00
CLIP [95] ✗ 4.72 5.25 2.44 51.89
CLIP [95] ✓ 4.14 5.35 2.46 53.07
FaRL [137] ✗ 3.03 4.66 2.16 51.01
FaRL [137] ✓ 4.00 5.75 2.56 51.10
EmoCLIP ✗ 5.24 15.34 3.80 51.30
EmoCLIP ✓ 6.58 18.53 4.78 52.59

Table 5.4: Zero-shot classification on the 43 compound expressions of the MAFW [73]
dataset. Supervised methods are included as a reference.

Furthermore, we present experimental results on the classification of 43 compound

emotions in the MAFW dataset in Table 5.4. We evaluate the performance of our pro-

posed method, EmoCLIP, against a baseline approach of using concatenated prompts,

as well as CLIP and FaRL baselines. Specifically, we concatenate the class descriptions

for each compound emotion and use this as class prompt input. We demonstrate that

EmoCLIP outperforms the baseline approach for all metrics. Moreover, we note that in

the 43 emotions classification, both CLIP and FaRL perform significantly worse than

EmoCLIP and have performance comparable to random (where only the majority class
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(a) CLIP Latent Image Representations

(b) EmoCLIP Latent Image Representations

Figure 5.3: Latent representation of the MAFW dataset using CLIP (a) and EmoCLIP
(b) for each emotion category.

is predicted). We theorise this is due to the lack of temporal understanding of the static

models. Furthermore, without fine-tuning the target domain, the class descriptions are

not discriminate enough for the zero-shot classification of emotions, as previously dis-

cussed. However, the representation average method on both baselines improves the

performance of the static models on the compound emotions task. We also report the

results of several supervised methods for reference, which perform significantly better

than zero-shot approaches as expected.

Finally, we evaluate the performance of our proposed method using sample-level

descriptions from MAFW [73] on four widely used video FER datasets and compare it

with the CLIP baseline as shown in Table 5.6. Additionally, in line with previous works

in zero-shot emotion classification [9, 125, 134, 93] we train our architecture using class-

level descriptions and evaluate using leave-one-class-out (loco) cross-validation. We

note that we cannot directly compare with these architectures, as they involve either

different modalities (eg. audio, pose) [9, 125, 93, 126] or a different task [134], we adopt

however, their experimental set-up using our architecture to show how natural language

supervision and semantically rich class descriptions can help improve zero-shot FER

80



5.3. Experimental Results

performance.

We observe that the EmoCLIP trained on MAFW [73] sample-level descriptions

show impressive generalisation ability on all datasets that we evaluate. Specifically,

for AFEW [33], MAFW [73] and DFEW [54], we see that the EmoCLIP model is

outperforming both the loco experiment and the CLIP [95] baseline. Furthermore,

the generalisation of the method is resistant to domain shift from unseen datasets, as

we observe from the significant performance increase between the CLIP [95] baseline

and EmoCLIP. We note that for FERV39K [120], the loco experiment has a higher

performance than the sample-wise training; however, it is very important to stress that

the FERV39K [120] is significantly larger than the base dataset (over 3x more samples)

therefore methods trained on it would have an advantage, particularly as in the loco

experiment there is no domain shift.

For reference and to provide context, we include the performance of the architecture

in a supervised setting on all four datasets. We want to point out that the architecture

trained using class descriptions is significantly outperforming the linear probe architec-

ture, particularly in terms of UAR, showing again that natural language supervision

can provide significant advantages even in a fully supervised setting.
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5.3.4 Downstream Task

We evaluate the representations obtained by the proposed method on the downstream

task of schizophrenia symptom estimation on two scales, namely the PANSS [55] and

CAINS [40] scales. As symptoms in both scales have ordinal labels, we address the

problem of symptom estimation as a multi-label regression. We evaluate the proposed

method in terms of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)

and Pearson’s Correlation Coefficient (PCC) for a fair comparison with previous works

in the literature. We train the linear probe architecture, with the video encoder ob-

tained through contrastive pre-training on the MAFW [73] frozen, and updating only

the MLP weights. The results against previous state-of-the-art (SoTA) can be seen on

Tables 5.7 & 5.8 for the PANSS [55] and CAINS [40] scales respectively. The proposed

method, pre-trained contrastively on sample level descriptions, outperforms or is com-

parable to previous methods on all symptoms, particularly for “N1: Blunted Affect”

and “Facial Expression” on the PANSS and CAINS scales, which are by definition most

related to FER.

As multiple healthcare professionals annotate the NESS [92] dataset, we can compare

the PCC achieved by the method to the annotators’ PCC, which has a mean value of

0.85 across all symptoms [15, 92]. The proposed method on the downstream task

achieves performance comparable to that of human experts on the total scores of both

scales, as we can see in Tables 5.7 & 5.8 particularly for the total scores.
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5.4. Qualitative Analysis

5.4 Qualitative Analysis

anger

contempt

disgust

happiness

Video Input
Ground

Truth
DescriptionPrediction

A short haired woman 
with a pen in her hand 
points proudly. The raised
eyebrows and the raised 
lip corners.

A man gestures with his 
hands and speaks excitedly. 
The deep frown and the 
wrinkled nose.

 
A man gestures to convey 
meaning. The raised lip 
corners.

A man opens his mouth to 
imitate pronunciation.A pout.

anger

anger

happiness

happiness

Figure 5.4: Example frames of correctly and incorrectly classified samples from the
MAFW [73] dataset, for anger (top) and happiness (bottom). The sample-level de-
scriptions are included for reference but are not used during inference.

Figure 5.4 showcases a selection of correctly and incorrectly classified instances from

the MAFW dataset. As the interpretation of emotion for humans is dependent on not

only the facial expression but also the context, we see that some samples are harder

than others to classify. It appears that examples with higher emotional intensity and

more animated subjects appear to be easier to classify. Conversely, subtle expressions

of emotion are prone to misclassification. For instance, in the anger examples depic-

ted in Figure 5.4, the man displays multiple anger-associated expressions, such as a

furrowed brow, whereas the woman exhibits a calmer demeanour. Similarly, in the

happiness examples, the appropriately classified sample features a smiling man, while

the incorrectly classified example shows a man with a subtle facial expression while

speaking.
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5.5 Conclusion

In this work, we presented a novel contrastive pre-training paradigm for video FER,

trained on video-text pairs with sample-level descriptions without any class-level in-

formation. While contrastive learning and natural language supervision have been

used in other domains, zero-shot emotion recognition remains surprisingly unexplored,

with works focusing on creating class prototypes with simpler word encoding meth-

ods [9, 93, 125, 126]. Emotional prototypes, however, disregard the intra-class vari-

ation that is inherently present in FER tasks. To overcome the limitations of training

on coarse emotional categories, EmoCLIP is trained on sample-level descriptions. We

evaluate our method on four popular FER video datasets [33, 54, 120, 73] and test using

zero-shot evaluation on the basic emotions as well as compound emotions. Our method

outperforms the CLIP baseline by a large margin and shows impressive generalisation

ability on unseen datasets and emotions. To our knowledge, this is the first work to

train with sample-level descriptions for FER and to propose zero-shot evaluation using

semantically rich class descriptions in the domain. We also evaluated the EmoCLIP

video encoder features on schizophrenia symptom estimation, outperforming previous

state-of-the-art methods and achieving performance comparable to human experts in

terms of PCC.
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Chapter 6

Conclusions
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6.1 Discussion and Conclusions

In this thesis, we worked towards a fully automated system for the assessment of mental

illness behavioural symptoms, specifically the negative symptoms of schizophrenia in

conditions that resemble real-life clinical interviews. As this is a very large research area

with few available datasets, we identify three sub-problems. First, we examine apparent

continuous affect as analysing facial non-verbal behaviour forms the underlying basis

of most affective tasks. Second, we extend such works to symptom severity estimation

and show that the two problems can be examined in parallel. Third, we develop a

method for zero-shot facial expression recognition to identify new and unseen emotions

and mental states using natural language descriptions.

We started by developing architectures for continuous affect estimation, i.e. Arousal-

Valence estimation, as there are several similarities between continuous affect and
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6.1. Discussion and Conclusions

symptom estimation. This relationship is inherent as both tasks heavily rely on the

non-verbal behaviour of the subject. Affect is directly measured for symptoms such

as Blunted Affect on the PANSS [55] or Facial Expression on CAINS [40]. How-

ever, as there are no universal definitions for apparent emotion, we first developed

an uncertainty-aware method for continuous affect estimation that addresses the in-

herent ambiguity in affective computing tasks. The proposed method addresses each

label as a univariate Gaussian distribution where the mean is the ground truth (annot-

ator’s mean) and an unknown variance predicted by the model. The Kullback–Leibler

(KL)-based loss minimises the distance between the Gaussian label and the network’s

prediction, a dirac delta. Such an approach is novel in continuous affect and improves

the performance of several backbone architectures. The contributions of this work are

two-fold: first, we show that the proposed methodology improves performance for static

image and video input and second, we show a weak relationship between the predicted

variance and noisy samples.

The KL-based loss acts as a regularisation method for noisy samples by penalising

less uncertain samples. At the same time, for less noisy samples, the loss prioritises

minimising the distance between the estimated mean and the annotators’ mean. Us-

ing several feed-forward neural network architectures with two MLP heads (one for

the main task and an additional one estimating label uncertainty), we show that the

proposed loss improves the network prediction, particularly in terms of Pearson’s Cor-

relation Coefficient (PCC).

In addition, when individual annotations are available, we calculate the PCC between

the estimated variance and annotators’ variance and show a weak positive correlation

for both Arousal and Valence. When individual annotations are not available, we com-

pare the categorical annotations against their theoretical equivalent on the continuous

Arousal Valence circumplex and identify a sub-group of noisy samples where the an-

notations are in disagreement. For the noisy sub-group, we show that the estimated
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variance is higher than the variance of the clean sub-group. The method is evaluated

on two popular affect datasets, namely the AMIGOS [83] and AffectNet [84], which are

composed of video and static images, respectively.

In the second main chapter of this thesis, we continue evaluating our methodologies

on continuous affect and extend the architecture to symptom severity estimation. The

main idea of the second methodology presented in this thesis is to use context to

improve the network predictions. Context, in this case, has a dual meaning as it refers

to the temporal neighbourhood of a clip sampled from a wider video and the other

samples during training.

Affect and mental health symptoms often refer to a wider behaviour that cannot

easily be localised along the temporal dimension; as a result, particularly for mental

health, video samples tend to be very long sequences of frames, which is problematic

in terms of architectural and hardware limitations. Typically, to address this issue,

researchers used statistical representations [113, 15] which disregard temporal relation-

ships of features or made predictions on shorter clips taken from wider videos that

can lead to the “flickering” problem [135] i.e. a model producing inaccurate and un-

related predictions for individual frames or clips, disregarding the temporal context

and leading to inconsistent or erratic output sequences. Our proposed architecture

uses a two-staged transformer architecture to improve individual clip predictions while

moving away from statistical representations of features. The architecture comprises

two networks with shared weights; one extracts clip-level features, while the second

extracts features from neighbouring clips that act as context features. The clip and

context features are fed into an attention block before passing the attended clip features

to the regression head. Updating the context branch weights and, consequently, fea-

tures during training significantly reduces training times and parameters compared to

previous work [122]. The experimental results, particularly the ablation studies, show

that including features from neighbouring clips greatly contributes to the prediction
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accuracy for both tasks, i.e. schizophrenia symptom estimation and continuous affect.

In the same chapter, we propose using sample context by introducing the relational

loss. More specifically, inspired by contrastive approaches in single-label categorical

tasks, we propose aligning the distances of the continuous label vectors to the dis-

tances of the clip latent features. The introduction of the relational loss is the main

contribution of Chapter 2, the strength of which lies in its simplicity. As we have seen in

several categorical tasks, latent feature alignment typically results in better predictions;

however, this idea has not been extended to continuous tasks. Experimental results

show that by aligning the clip-level feature distances to the label vector distances, the

architecture’s performance is significantly improved, particularly for smaller datasets.

Finally, in the last methodological chapter of this thesis, we explore the idea of

natural language as a method of describing emotional states instead of the classic

supervised setting using Ekman’s [35] categorical model. Such an approach is intuit-

ive among humans; however, it remains relatively unexplored in affective computing.

More specifically, we propose jointly training video and text encoders by optimising

the cosine similarity of video-text embedding pairs in the mini-batch. While previous

works in FER have used class prototypes during training, we proposed using sample-

level descriptions of the subject’s facial expressions. During inference, we evaluate

using class-level descriptions of each emotion concerning the facial expression instead

of descriptions as “a photo of {emotion}”. While the approach is still evaluated on cat-

egorical emotions predefined by each dataset, we show experimentally that the network

maintains impressive zero-shot capabilities across datasets. For compound emotions

that are combinations of basic emotions, we propose linearly combining the latent fea-

tures of the components rather than creating additional category descriptions. Com-

bining basic emotional descriptions is consistent with Ekman ’s [35] universality of the

basic emotions but addresses limitations associated with the large intra-class variations

in the basic categories. The semantically rich latent space obtained when training with
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sample-level descriptions helps achieve results comparable to or outperforming previous

work on the downstream task of schizophrenia symptom estimation.

One of the main themes of our analysis revolves around the use of labels in hu-

man affect, whether by acknowledging label uncertainty (Chapter 3), labels’ context

(Chapter 4) or natural language to describe emotional states (Chapter 5), we show that

significant performance improvements can be achieved by understanding the inherent

ambiguity and intra-class variation in affective computing. Another central theme is

the transferability of methods within affective computing tasks. While mental health

symptom estimation has unique challenges associated with the problem’s nature, we

can draw methodological parallels that help improve task-specific performance by look-

ing at the more general problem of understanding human behaviour.

6.2 Strengths and Limitations

In the methodological chapters of this thesis, we address three challenges related to the

ground truth labels of affective computing tasks: uncertainty, context and definitions

in Chapters 3, 4 and 5 respectively. The proposed approaches differ from traditional

supervised settings where a network makes a single categorical or continuous predic-

tion; as we have shown experimentally, performance improvements can be made by

understanding the nuances of the ground truth.

In classic supervised learning tasks, each input has a target vector that, in tasks

such as object detection, is very objectively defined and visually grounded. However,

as established in Chapter 1, human behaviour is more abstract and subjective, even for

human experts. Previous research typically takes the mean or majority of annotations

during training and inference to address this inherent ambiguity. In Chapter 3, we

show that by acknowledging label uncertainty during training in both dynamic and

static tasks, we can learn continuous affect more robustly. In addition, we show that

there is a relationship between estimated uncertainty and the annotators’ disagreement
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without explicitly training on the latter. Such an approach is novel in continuous

affect; however, the estimated uncertainty can only be evaluated if the annotators’

disagreement is available. Furthermore, as typically affective datasets have a limited

number of samples, the estimated uncertainty could greatly be influenced by the label

distribution and available samples.

As annotating large datasets is costly, several pre-training methods such as con-

trastive learning [27, 26, 59] have been proposed in the literature focusing primarily

on categorical tasks. In Chapter 4, we propose a novel approach inspired by super-

vised contrastive learning to regularise learning in multi-label continuous tasks and

learn better latent representations. In addition, we show that incorporating features

from the wider temporal context can further improve the method’s performance on

both tasks, i.e., continuous affect estimation and schizophrenia symptom estimation.

However, hardware constraints still are a significant limitation to consider when using

context features in very long videos, e.g. in the schizophrenia symptom estimation

task where it is still impossible to include all frames when making a prediction, thus

leading to some information loss. Furthermore, when very long videos with low-label

resolution are analysed in human behavioural tasks, we can expect that not all frames

exhibit the behaviour [68]. As such, inherent aleatoric uncertainty is not addressed by

the methods in this thesis.

As discussed in Chapter 1, several models are proposed for human affect [35, 99].

However, the human emotional experience is very diverse, and humans use a pleth-

ora of descriptions for their emotional states, which are not accurately described by

the coarse basic emotions categorical model. Furthermore, the Arousal-Valence cir-

cumplex is not easily explained in natural language, which is a significant obstacle

in the interpretability of continuous methods. Given the subjectivity of human emo-

tions, there is a motivation for approaches that can identify new and unseen emotional

states, i.e. zero-shot approaches in FER. In Chapter 2, we see that very few methods
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attempt zero-shot FER and that these focus on learning from coarse categories. Such

approaches ignore the intra-category variance and sample-level differences in emotional

expression; therefore, their latent representations would not include semantically rich

information regarding the samples’ apparent emotion and thus would be less robust

to new emotional states. In Chapter 5, we propose adopting a natural language su-

pervision approach using sample-level descriptions, which is novel in the domain of

dynamic FER. We show that the proposed approach is superior to class prototypes

and generalises better to unseen datasets and emotions. However, as affective data-

sets are typically small zero-shot approaches in FER still underperform compared to

fully-supervised methods and lack the performance capabilities of VLMs in other tasks.

6.3 Wider Implications and Potential Applications

This thesis has contributed to automated emotional and mental state estimation. As

briefly mentioned in Chapter 1, there are several potential applications for affective

computing in general, mainly focusing on assisting professionals and improving human-

computer interaction. The most straightforward application of the proposed methods

is in a clinical setting, assisting healthcare professionals with patient assessment by

analysing non-verbal behaviour. Such an application would help develop personalised

medicine in mental health, considering individual emotional and mental states for more

tailored treatment. From a methodological perspective, we show that by addressing

affect and mental health intersectionally, we can research towards a more unified human

behavioural model.

However, there are several implications to consider in affective computing tasks, spe-

cifically around ethics, privacy and potential misuse of such technology. Algorithmic

bias is a major concern, particularly in domains such as affective computing, with lim-

ited training data available to researchers. A low data regime can be very problematic

in affective computing and even more so in mental health tasks, as it is very easy for
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models to learn from unrelated characteristics (e.g. skin colour, environment) instead

of the underlying behaviour. Bias in diagnostic tools bears significant risks for public

health, and efforts need to be made to mitigate bias in both datasets and algorithms.

One promising direction is the use of synthetic data [34]; however, research in the do-

main is still in its infancy, particularly for dynamic datasets. In addition, automated

methods may misinterpret subtle signs of mental health conditions, leading to incorrect

diagnoses or recommendations. This risk can be avoided with human validation, so it

is important to stress that any automated assessment and diagnostic tools should aim

to assist rather than replace experts.

An additional advantage of synthetic data is anonymisation and privacy. The low-

data regime discussed in the previous paragraph is a direct result of the sensitivity of

the tasks. Anonymisation allows for the safe collection of datasets without the risk of

leaking private or sensitive information such as medical records, a major concern that

inhibits research in mental health tasks.

6.4 Future work

Although the proposed methods for symptom estimation show promising results, ML

in mental health is still an emerging field. As a result, further improvement in terms

of performance and generalisation abilities is needed to achieve a reliability level ac-

ceptable for clinical application. The datasets and methods proposed are limited to

schizophrenia patients, completely disregarding other illnesses with similar symptoms

or pathology, for example, schizoaffective disorder that shares some but not all of

the symptoms present in schizophrenia [121]. Still, there is no indication of how the

methods proposed in this thesis would generalise to patients with those conditions, par-

ticularly as several symptoms in schizophrenia are correlated to each other [113, 115],

which is a form of bias in the annotations provided. There is, therefore, an opportunity

for a fine-grained approach that looks into a more general pool of subjects with shared
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symptoms but different conditions.

In addition, with mental health data being limited due to confidentiality constraints,

there is a significant research gap for zero-shot approaches in schizophrenia specifically

and mental health symptom estimation in general. In this thesis, we explore zero-shot

approaches based on natural language descriptions of emotional states in categorical

FER; however, extending the zero-shot method to mental health is currently con-

strained by language model limitations. More specifically, negative symptoms define

behaviour that is absent in patients relative to the general population; therefore, the

latent representations of the class descriptions in the symptom estimation task need to

account for negated prompts, that is, which is a major limitation in the capabilities of

Large Language Models currently [52]. As such, there is a significant opportunity to

address the negated prompts in zero-shot affect and mental health symptom estimation.
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A.1 Positive and Negative Symptom Scale (PANSS)

The Positive and Negative Syndrome Scale (PANSS) is a scale used for measuring the

symptom severity of schizophrenia. It is widely used for the assessment of patients and

to measure illness progression.

PANSS rates 30 symptoms in three symptom categories: (a) Positive Symptoms,

(b) Negative Symptoms, and (c) General Psychopathology. Each of the 30 items is

accompanied by a specific definition and detailed anchoring criteria for all seven rating

points given by [55]. These seven points represent increasing levels of psychopathology,

as follows:

1. Absent

2. Minimal

3. Mild
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A.1. Positive and Negative Symptom Scale (PANSS)

4. Moderate

5. Moderate Severe

6. Severe

7. Extreme

The Positive Symptoms refer to behaviour present in patients with schizophrenia

but not the general population. The seven symptoms on the positive scale are listed

as follows:

1. Delusions

2. Conceptual disorganization

3. Hallucinatory behaviour

4. Excitement

5. Grandiosity

6. Suspiciousness/Persecution

7. Hostility

The Negative Symptoms refer to a lack of function in patients with schizophrenia

relative to the general population. The seven symptoms of the negative scale are listed

as follows:

1. Blunted affect

2. Emotional withdrawal

3. Poor rapport
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4. Passive/apathetic social withdrawal

5. Difficulty in abstract thinking

6. Lack of spontaneity & flow of conversation

7. Stereotyped thinking

Finally, sixteen symptoms are associated with the general psychopathology scale:

1. Somatic concern

2. Anxiety

3. Guilt feelings

4. Tension

5. Mannerisms & posturing

6. Depression

7. Motor retardation

8. Uncooperativeness

9. Unusual thought content

10. Disorientation

11. Poor attention

12. Lack of judgement & insight

13. Disturbance of volition

14. Poor impulse control

15. Preoccupation

16. Active social avoidance
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A.2 Clinical Assessment Interview for Negative

Symptoms (CAINS)

The Clinical Assessment Interview for Negative Symptoms (CAINS) [40] is a “second

generation” scale for the assessment of negative symptoms in schizophrenia; it was de-

veloped using an iterative, empirical approach and includes items assessing motivation,

pleasure, and emotion expression. CAINS consists of two negative scales rated separ-

ately: Motivation & Pleasure and Expression. The Motivation & Pleasure scale has

nine symptoms, and the Expression scale has four. Each symptom has a value between

zero and four, representing increasing levels:

0. No impairment

1. Mild deficit

2. Moderate deficit

3. Moderately severe deficit

4. Severe deficit

The motivation and pleasure scale measures impairment in motivation for social

relationships, school/work activities and recreation and lists the following symptoms:

1. Motivation for Close Family/Spouse/Partner Relationships

2. Motivation for Close Friendships & Romantic Relationships

3. Frequency of Pleasurable Social Activities - Past Week

4. Frequency of Expected Pleasure from Social Activities - Next Week

5. Motivation for Work & School Activities
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6. Frequency of Expected Pleasure from Work & School Activities - Next Week

7. Motivation for Recreational Activities

8. Frequency of Pleasurable Recreational Activities - Past Week

9. Frequency of Expected Pleasure from Recreational Activities - Next Week

The expression scale measures impairment in the expression of emotion and speech.

The rating is based on observations during the clinical interviews. The expression

symptoms in CAINS are as follows:

1. Facial expression

2. Vocal expression

3. Expressive gestures

4. Quantity of Speech
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