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A B S T R A C T

The human’s capacity to perceptually entrain to an auditory rhythm has been repeatedly modeled as a
dynamical system consisting of one or more forced oscillators. However, a more recent perspective, closely
related to the popular theory of Predictive Processing, treats auditory entrainment as an inference process in
which the observer infers the phase, tempo, and/or metrical structure of an auditory stimulus based on event
timing. Here, we propose a close relationship between these two perspectives. We show for the first time that
a system performing variational Bayesian inference about the circular phase underlying a rhythmic stimulus
takes the form of a forced, damped oscillator with a specific nonlinear phase response function corresponding
to the internal metrical model of the underlying rhythm. This algorithm can be extended to simultaneous
inference on both phase and tempo using one of two possible approximations that closely align with the two
most prominent models of auditory entrainment: one yields a single oscillator with an adapting period, and the
other yields a networked bank of oscillators. We conclude that an inference perspective on rhythm perception
can offer similar descriptive power and flexibility to a dynamical systems perspective while also plugging into
the fertile unifying framework of Bayesian Predictive Processing.
. Introduction

Humans show a strong capacity to perceptually identify recurring
emporal patterns underlying an auditory stimulus and use them to
ontextualize the stimulus as it unfolds (henceforth referred to as ‘‘au-
itory entrainment’’). In music listening, this capacity gives rise to the
xperience of the ‘‘beat’’, a subjective impression of a (usually) periodic
ulse at a walking or running tempo (Merchant et al., 2015). This
ulse is consistent with, but may not be unambiguously specified by,
he objective temporal structure of the music (the ‘‘rhythmic surface’’).
uditory entrainment occurs alongside entrainment of neural activity,
nd entrained neural signals seem to emphasize the level of periodicity
ssociated with the experienced beat (Nozaradan, 2013, 2014).

In recent decades, interest has grown in understanding the cogni-
ive and neurophysiological substrates of the experience of rhythmic
tructure, with particular emphasis on the beat. An expression of this
nterest has been a series of efforts to build mathematical models
f rhythm/beat perception. One fruitful modeling thread posits that
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physical oscillations in the brain synchronize to external rhythms,
giving rise to beat perception as well as other rhythmic aspects of
perception. These oscillations are modeled as dynamical systems made
up of one or more oscillatory components. This thread has birthed
a series of models that explain a range of facets of human rhythm
perception in terms of generic properties of such dynamical systems.

A more recent modeling thread posits that perception of beat and
metre in rhythm represents an ‘‘inference’’ about underlying structure
based on evidence presented by the rhythmic surface. Although this
perspective has not yet achieved the same descriptive range as oscil-
lator models, it is appealing in that its mathematical and conceptual
language naturally connects rhythm perception with other perceptual
and motor processes within the same modeling framework.

Below, we briefly review these two modeling threads. Although it
is difficult to fully separate models of rhythm perception from models
of physical entrainment to rhythm, we attempt to narrow our scope
to the former (but see Palmer and Demos (2022) for a similar review
including the latter).
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1.1. Oscillator models of auditory entrainment

Early models of auditory entrainment as oscillation were employed
to describe the perception of musical meter (Large & Kolen, 1994; Large
& Palmer, 2002), and more generally to describe the entrainment of
periodic fluctuations of attention and time perception (Large & Jones,
1999; McAuley, 1995; McAuley & Jones, 2003). In these models, the
state of the entrained perceptual process (e.g., attention) was described
by a single phase variable (a ‘‘phase oscillator’’) that was assumed to
advance steadily around the circle with time, and rhythmic sensory
events were assumed to perturb this phase differently depending on
the current phase at the time of the event (i.e., according to a ‘‘phase
response curve’’). In some formulations, the phase response curve
was defined as the gradient of an abstract ‘‘expectancy function’’ that
specified how much an event was expected at each phase: the phase
advanced when events occurred slightly earlier than expected and
regressed when they occurred slightly later. This basic model allowed
the perceptual process to entrain to a range of rhythm periods near its
characteristic unforced frequency. The model is then extended to adapt
its tempo/period according to a similar response function, allowing
it to entrain at a range of tempi, and sometimes with an adaptable
phase response curve that makes event prediction more precise when
predictions of temporal regularity are repeatedly satisfied. We shall
refer to this class of models as ‘‘adaptive oscillators’’.

A separate set of models of auditory entrainment used ‘‘banks’’ of
linear (Todd et al., 2002) or nonlinear (Large et al., 2010) oscillators
with a gradient of intrinsic frequencies. Oscillators in these models have
amplitudes as well as phases — metrical structure is identified by the
amplitudes of groups of oscillators in response to the forcing input,
where meter can be defined as a perceived and hierarchically embedded
ollection of recurring temporal periods within a stimulus (the beat

generally being the most salient) (London, 2004). Damping terms that
cause amplitudes to decay over time allow them to account for the
loss of entrainment after the offset of a rhythmic stimulus. Learnable
coupling strengths between oscillators arranged in multiple layers give
these models formidable capacity to pick out underlying pulses from
complex rhythms (Kim & Large, 2021; Tichko & Large, 2019) and con-
tinue them in the absence of rhythmic input if appropriately modulated
(Large et al., 2015). We shall refer to this class of models as ‘‘gradient
frequency neural networks’’.

These models fit more or less comfortably into the perspective
that properties of behavior and perception emanate first and foremost
from the generic properties of dynamical systems. This perspective
can account for many aspects of rhythm perception and production
with appropriate parameter and feature choices. However, it offers
us little insight into the cognitive and evolutionary facets of human
rhythmicity. Can our ability and tendency to entrain movement to
complex rhythms within a specific tempo range rightly be described as
an example of a broader class of perceptual processes in which we use
sensation to identify underlying structure? Even a novice musician can
flexibly interact with a beat to create a wide range of rhythms — it may
be possible to account for this phenomenon with elaborate networks of
oscillators, but it becomes increasingly appealing to break out of the
strict dynamical systems perspective and allow the brain some type of
‘‘internal representation’’ of a rhythm that it can flexibly utilize.

1.2. Entrainment by inference

A distinct approach to modeling auditory entrainment treats it as a
process of inference — identifying and making sense of what is happen-
ing in the world. Where oscillator approaches to human rhythmicity use
math to describe the dynamics of hypothesized physiological processes,
inference approaches use math to describe the process of integrating
sensory evidence into representations of rhythmic stimuli. Sensory
information can inform a representation of something in the world via
2

some understanding of how things in the world produce sensation; we
will call such an understanding a ‘‘generative model’’. Based on this
model, the listener can back-track from sensation to cause (i.e., ‘‘invert’’
the model). Unlike the modeling language of oscillators, this language
is essentially cognitive and representational — the dynamic states in
such a model are ‘‘representations’’ that carry meaning about something
in the world. Importantly, our generative models are thought to be
inherently stochastic, and therefore our representations include not
only estimates of world states, but also of uncertainty regarding those
states. Since the mathematics of inverting stochastic causal models
draws on Bayes Rule, this perspective on the brain is often referred
to as the ‘‘Baysian Brain’’ hypothesis.

The Bayesian Brain is the groundwork of the theory of Predictive
Processing (at least in its most recent incarnations: Friston, 2005,
2010), which proposes that the updating of representations of the world
based on sensory data is performed by adjusting representations to min-
imize error between the sensory data predicted by the model and actual
sensory data. Note that Predictive Processing has been extended to a
hypothesized set of neurophysiological mechanisms that implement the
Bayesian computations, which should be considered distinct from the
essentially cognitive foundation of the theory. See Friston (2005, 2010)
for discussion of the value of the Predictive Processing/Bayesian Brain
perspective, and Koelsch et al. (2019) for its value in understanding
music cognition.

In the first work connecting rhythm perception directly to Predictive
Processing, Vuust and Witek (2014), the authors proposed that listeners
carry a generative model of when sound events should occur within the
metrical structure of a rhythm, and interpret all incoming rhythmic
information in light of this model, using it to continuously infer and
update a representation of the underlying meter. (This proposal was
fleshed out more fully in Vuust et al. (2018)). Other modeling work
has proposed that listeners may continuously infer whether a rhythmic
input stream is caused by a single agent or two (Elliott et al., 2014).
A recent model (Heggli et al., 2021) suggests that even self-produced
sounds may be inferred to come from the same source as external
sounds; such self/other integration may then influence the dynamics
of synchronization (also see Koban et al., 2019).

In our recent work, we have modeled entrainment to a rhythm
as a process of approximate Bayesian inference about the progress of
a stimulus through an expected metrical structure, which may also
include inference about the speed (or tempo) of the stimulus (Cannon,
2021). We further developed this model to include inference over
multiple possible metrical templates (Kaplan et al., 2022), as hypothe-
sized by Vuust and Witek (2014). However, both of these models were
formulated in a manner agnostic to periodicity – what was inferred was
linear progress through a structure that might or might not be periodic
– and therefore the oscillator dynamics that provide such an elegant
description of entrainment to a beat were not present.

Several authors have proposed that Bayes-like inference about the
phase and/or tempo of a stimulus may be performed by oscillators. Heg-
gli et al. (2019) model dyadic synchronization by treating each partner
as a pair of coupled oscillators that can be loosely interpreted as models
of the self and other. Doelling et al. (2023) show that a forced oscillator
with adaptive frequency reproduces Bayesian aspects of human judge-
ments about rhythmic timing. In both these cases, oscillators are shown
to have convenient inference-like characteristics, but in neither case is
the state of the oscillator mapped onto a meaningful representation in
an actual formal inference problem.

1.3. Objective

Here we aim to demonstrate that an inference perspective on
rhythm perception naturally gives rise to the dynamics and mathe-
matics of forced and coupled oscillators. In other words, if we adopt
the view that our perception of rhythmic structure can be usefully
described as a representation of a dynamic process underlying the

rhythmic surface, it leads us to models of rhythm perception that
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Fig. 1. Three proposed models of rhythm perception as inference. (A) c-PIPPET
estimates the instantaneous circular phase underlying a rhythmically patterned stimu-
lus, tracking a Gaussian-like distribution over possible phases that progresses around
the circle based on a known underlying tempo (while at the same time spreading
out as phase uncertainty increases) and that resets at each sound event. A vector
representation of this distribution (red arrow) acts like a damped linear oscillator with
nonlinear forcing. (B) Variational c-PATIPPET estimates the instantaneous phase and
tempo of the stimulus, tracking a multivariate Gaussian-like distribution over phase
and tempo that progresses around the phase/tempo cylinder (while at the same time
tilting and spreading) and that resets at each sound event. (C) Gradient c-PATIPPET
also estimates the instantaneous phase and tempo of the stimulus, but instead tracks
a distribution over phase and tempo in the form of a collection of phase distributions
conditioned on a gradient of possible tempi, each progressing around the circle at its
own rate and resetting at sound events.

mathematically resemble existing oscillator models and show a similar
descriptive repertoire reproducing key properties of human rhythm
perception.

Our demonstration takes the form of three models, illustrated in
Fig. 1. The first, c-PIPPET (Cycle Phase Inference from Point Process
Event Timing, Fig. 1A), describes a formal inference process in which
the listener continuously makes their best possible probabilistic esti-
mate of the momentary phase of a rhythmically patterned stimulus
given a probabilistic internal model of the stimulus/partner’s behavior.
In short, we find that the dynamics of a properly designed oscillator
solve the formal ‘‘phase inference’’ problem necessary to make metrical
sense of a complex rhythm.

The second and third models extend c-PIPPET to include inference
about tempo as well as phase; both are therefore called c-PATIPPET
(Cycle Phase And Tempo Inference from Point Process Event Timing).
Each uses a different approximation to reduce a dynamic distribution
over phase and tempo to a finite collection of dynamic variables. ‘‘Vari-
ational c-PATIPPET’’ (Fig. 1B) tracks a fully variational approximation
of a distribution over possible phases an tempos: the distribution is
parameterized by a mean phase, a mean tempo, and a covariance
structure relating phase and tempo. By contrast, ‘‘gradient c-PATIPPET’’
(Fig. 1C) instead breaks tempo space into a range of discrete tempo bins
such that the distribution over phase and tempo is parameterized by
a circular Gaussian distribution over phase in each tempo bin. These
models closely resemble existing oscillator models (‘‘adaptive oscilla-
tor’’ models and ‘‘gradient frequency neural networks’’, respectively),
but all of the variables carry specific representational meanings in the
context of ongoing inference of underlying rhythmic structure.

Below, we present mathematical formulations of each model and the
inference problems they solve. For each, we show simulation results
3

demonstrating the model’s behaviors that correspond to properties
of human rhythm perception. In the Discussion, we show that by
linking the dynamics of rhythm perception to problems of inference,
these models raise interesting theoretical questions which suggest new
directions for empirical research.

2. c-PIPPET: Cycle phase inference from point process event tim-
ing

Here we will build on recent work that began the process of modeling
entrainment as inference (Cannon, 2021). In this earlier work, the
listener’s generative model was stated in a general form that did not
assume that the stimulus was periodic. Here, we show that if the lis-
tener’s generative model assumes some type of periodicity (e.g., a beat)
underlying the stimulus, then the solution to this inference process is
naturally approximated by a damped linear oscillator with nonlinear
pulse forcing, where the forcing function is derived directly from a
representation of the listener’s metrical expectations.

2.1. Generative model

Suppose that the observer believes that the rhythmic stream of
events they are listening to is generated by a rule that repeats peri-
odically. One highly general form of such a rule is to assume that the
stimulus possesses an underlying phase 𝜙 that advances steadily on the
circle, and that events occur probabilistically at specific phases. For
example, when listening to a rhythm with a beat that is sometimes
split into duple subdivisions (i.e., with sound events halfway between
the beats), one might strongly expect sound events to occur when the
underlying beat cycle reaches phase zero and weakly expect them at
the opposite phase. Phase-based event expectancies operationalize the
assumption underlying the metrical inference hypothesis of Witek &
Vuust: sound events at specific points in a metrical cycle. See Fram
and Berger (2023) for evidence that this probabilistic formulation is an
appropriate way to describe the subjective experience of metre.

The observer’s observations are, however, corrupted by noise. We
may suppose that the observer suffers from three sources of ‘‘noise’’:

1. random delays in processing the timing of auditory events
2. noisiness in measuring elapsed time
3. random auditory events unrelated to the stimulus.

Noise source 1 will cause the observer to experience events as
randomly perturbed from the expected event phases. We can describe
the resulting sequence of events in terms of a point process, where
events occur at rate 𝜆(𝜙) (a function of the stimulus phase). 𝜆(𝜙) will
consist of peaks near expected event phases with some spread on either
side:

𝜆(𝜙) =
∑

𝑗
𝜆𝑗𝜑𝑤𝑟(𝜙|𝜙𝑗 , 𝑣𝑗 ) (1)

where 𝜑𝑤𝑟(𝜙|𝜙𝑗 , 𝑣𝑗 ) is a Gaussian function wrapped over the 𝜙 circle
with mean 𝜙𝑗 and variance 𝑣𝑗 , and 𝜆𝑗 is a scaling factor corresponding
to the overall likelihood of events associated with peak 𝑗. We can think
of 𝜆(𝜙) as a ‘‘metrical expectation template’’ over phase, representing
the points in the metrical cycle when events are expected (𝜙𝑗) and
how precisely these events specify the underlying phase (𝑣𝑗 , with large
values indicating less precision). See Fig. 2 for illustration.

Noise source 2 would most properly be modeled by assuming that
the inference process somehow takes into account noise in its own
execution. However, since this source of noise would be experienced by
the observer as noise disrupting the steady advance of stimulus phase,
we operationalize it from the observer’s perspective by incorporating
Brownian noise into the dynamics of stimulus phase:

�̇� = 𝜔 + 𝜎 𝐵 (2)
𝜙 𝑡
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Fig. 2. Illustration of two possible metrical expectation templates. (A) The listener
expects to perceive sound events in a close vicinity (quantified by variance 𝑣1) to an
ongoing periodic beat. As a result, each sound event will cause them to infer that the
phase of the ongoing pulse is near the beat phase 𝜙1. (B) The listener expects events
on the beat, and expects events halfway between beats less strongly (quantified by
scale 𝜆2 relative to the scale of on-beat expectations 𝜆1) and with greater temporal
uncertainty (quantified as variance 𝑣2).

where 𝜔 is the frequency of the repetitive rule underlying the stimulus,
𝐵𝑡 is a Wiener process (Brownian noise) with unit variance, and 𝜎𝜙 is
the amplitude of the Brownian noise.

The third source of noise, random events unrelated to phase, can be
modeled by simply incorporating a small constant 𝜆0 into the sum (1)
defining the expected event probability 𝜆(𝜙), representing the fact that
an event can happen at any time with a certain low probability.

2.2. Phase inference

Given these noise sources, the ideal observer should track not just
the stimulus phase but a distribution over possible phases. In Cannon
(2021), we let stimulus phase live on the real line and let the observer
represent inferred phase with a Gaussian distribution. Here, we let
it live on the circle instead, representing a distribution over possible
phases within a metrical cycle. Tracking a distribution over stimulus
phase (rather than a single most-likely stimulus phase) is particularly
important at the onset of a stimulus: immediately preceding the first
event, the observer should have no expectations for the phase of the
stimulus, and should therefore start with a uniform distribution over
phase that is updated at the first event. The simplest non-trivial form
of a distribution over possible stimulus phases is a wrapped Gaussian:

𝑝(𝜙) = 𝜑𝑤𝑟(𝜙|𝜇𝑡, 𝑉𝑡)

with two parameters: a mean 𝜇𝑡 representing a most likely stimulus
phase at time 𝑡 and variance 𝑉𝑡 representing the spread of possible
stimulus phases around 𝜇𝑡 (i.e., the level of uncertainty about stimulus
phase). See Cannon (2021) for a discussion of experimental evidence
that listeners are indeed tracking both a most likely stimulus phase and
their uncertainty about stimulus phase as a rhythm unfolds. Both of
these parameters evolve in time by applying Bayes’ rule at each 𝑑𝑡 time
step to incorporate the observation of presence or absence of a sound
event in that time step into a prior distribution over stimulus phase,
while taking into account the anticipated forward progress of stimulus
phase. We will see that at sound events, the inferred distribution
over phase resets discontinuously, whereas between events, it evolves
continuously, with mean progressing around the circle and variance
gradually increasing (Fig. 3). As pointed out in Cannon (2021), this
is a Kalman–Bucy filter for phase based on point process observations.

If the circular distribution 𝑝(𝜙) is conceived of as a distribution on
the unit circle 𝑒𝑖𝜋𝜙 in the complex plane, its center of mass (or first
moment) is

𝑍 ∶= 𝑒𝑖𝜋𝜙𝑝(𝜙)𝑑𝜙
4

∫𝜙
Fig. 3. The inferred distribution over stimulus phase evolves continuously between
sound events, with mean 𝜇𝑡 progressing around the circle and variance 𝑉𝑡 gradually
increasing from time 𝑡0 (lighter blue) to time 𝑡1 (darker blue). This dynamic distribution
can be represented as a vector 𝑍𝑡 with angle 𝜇𝑡 and amplitude 𝑒−

𝑉𝑡
2 . This vector’s angle

moves around the circle from 𝑡0 (lighter red) to 𝑡1 (darker red) as its amplitude decays,
following the pattern of a damped oscillator.

A wrapped normal distribution is fully specified by its first moment 𝑍.
It is well established that this moment can be written in terms of the
wrapped normal’s mean 𝜇 and variance 𝑉 :

𝑍 = 𝑒𝜇𝑖−
𝑉
2 (3)

Thus, if the dynamic distribution over stimulus phase is assumed to take
the simplified form of a wrapped normal, then the dynamic parameters
𝜇𝑡 and 𝑉𝑡 of this distribution can be recovered from dynamic first
moment 𝑍𝑡 via 𝜇𝑡 = 𝑎𝑟𝑔(𝑍𝑡) and 𝑉𝑡 = −2𝑙𝑜𝑔(|𝑍𝑡|). When 𝑍𝑡 is on the
unit circle (|𝑍𝑡| = 1), then we have 𝑉𝑡 = 0: the observer is totally certain
about their estimate of stimulus phase. Conversely, when 𝑍𝑡 = 0, then
we have 𝑉 = ∞: the observer is totally uncertain about stimulus phase,
and their wrapped normal distribution takes the limiting form of a
uniform distribution over the circle.

In the Derivation section, we show that at each event, 𝑍𝑡 resets to
another point �̂� = 𝐹 (𝑍𝑡) in the complex plane. The resetting function
𝐹 is defined in the Derivations section in terms of the parameters of
the expectation 𝜆(𝜙). Here we will only note the key properties of this
function:

• When |𝑍𝑡| = 1, i.e. 𝑉𝑡 = 0, 𝑍𝑡 does not change at an event: 𝐹 (𝑍𝑡) =
𝑍𝑡. (When the observer is totally confident about stimulus phase,
events have no influence.)

• For smaller |𝑍𝑡|, 𝐹 (𝑍𝑡) generally moves in the direction of the
nearest peak of 𝜆(𝜙), as illustrated in Fig. 4. (When the observer
is uncertain about the stimulus phase, an event pulls their phase
estimate toward the nearby phase at which events are expected.)

• If |𝑍𝑡| = 0, i.e., 𝑉𝑡 = ∞, then the phase of 𝐹 (𝑍𝑡) is generally
the phase at which events are most strongly expected. (When the
observer knows nothing about stimulus phase, the first event is
assumed to correspond to the strongest metrical position.)

We further show in the Derivations section that the continuous
evolution of 𝑍𝑡 between events is governed by a differential equation
of the form

�̇� =

(

𝑖𝜔 −
(𝜎𝜙)2

2

)

𝑍𝑡 + 𝛬𝑡(𝑍𝑡 − �̂�) (4)

where 𝛬𝑡 represents the degree to which an event is expected at time
𝑡 given the inferred distribution on stimulus phase (or the ‘‘subjective
hazard function’’). The second term above allows strong expectations
to manipulate the ongoing estimate of phase, even in the absence of
events. See Cannon (2021) for evidence that the absence of expected
events does subtly manipulate our rhythmic anticipation in this way. In
this presentation, we will ignore these effects for simplicity by assuming
that event expectancy is relatively weak, i.e., 𝛬𝑡 is small. As a result,
the expression reduces to

�̇� =

(

𝑖𝜔 −
(𝜎𝜙)2

)

𝑍𝑡 (5)

2
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Fig. 4. Phase and amplitude resetting at events in c-PIPPET models. (A) A polar grid of possible oscillator phases and amplitudes, corresponding to a full range of possible
estimated stimulus phases and degrees of phase certainty. Phase and amplitude resetting at a sound event will be illustrated in (B) and (C) by displacing these dots to their new
values. (B) If the metrical expectation template (black line) consists of a single phase 𝜇𝑗 = {0.0} at which events are expected (plus a small constant 𝜆0), then an event resets the
estimated phase toward 0. If the phase is already near 0, the amplitude (phase certainty) increases. (C) If the metrical expectation template consists of two phases 𝜇𝑗 = {0.0, 𝜋}
at which events are equally expected (plus a constant 𝜆0), then an event resets the phase toward the nearest one.
This differential equation that describes an under-damped harmonic
oscillator with frequency 𝜔 that decays exponentially back to a stable
fixed point at 0 at rate (𝜎𝜙)2

2 . This is the generic behavior of a dynamical
system near a stable fixed point with a pair of complex eigenvalues.

Uncertainty
Multiple variables in this model relate to different types of uncer-

tainty, so for clarity we list and disambiguate them here:

• 𝑉𝑡 = −2 log(|𝑍𝑡|) is a dynamic variable quantifying the observer’s
uncertainty about the stimulus phase at time 𝑡 in the form of the
variance of their posterior distribution on phase.

• 𝜎𝜙 is a constant quantifying the magnitude of phase noise as-
sumed by the observer’s generative model; as a result, this param-
eter determines the rate of growth of phase uncertainty 𝑉𝑡 (i.e. the
rate of decay of |𝑍𝑡|) between sound events.

• 𝑣𝑗 is a constant quantifying the (im)precision with which sound
events are associated with a particular stimulus phase 𝜙𝑗 in the
observer’s generative model. When a sound event occurs at a time
that associates it unambiguously with phase 𝜙𝑗 , phase uncertainty
𝑉𝑡 is reduced a lot if 𝑣𝑗 is small and less if 𝑣𝑗 is large.

2.3. Phase inference simulations

Please see Appendix B for a list of parameters used in the simula-
tions below.

The behavior of this model is particularly interesting in response
to syncopated rhythms, i.e. rhythms in which sound events are ab-
sent at metrical positions associated with strong expectations (e.g., on
certain beats) but present at weaker metrical points nearby (e.g., the
subdivisions between beats). In Fig. 4, we illustrate the function 𝐹
that describes the resetting of the c-PIPPET oscillator at events. Note
that this is not an ordinary phase resetting function in that it depends
on and resets not only phase but also radius. In Fig. 5, we simulate
c-PIPPET inferring the phase of a perturbed metronome over several
clicks, and illustrate the phase and radius dynamics of the oscillator
that implements this inference.

Fitch and Rosenfeld (2007) note that for sufficiently syncopated
rhythms, the listener may choose an interpretation in which the even
timing of beats is violated in order to place the beat at a position
that better matches the rhythmic surface. By simulating the phase
inference process on the circle rather than the line (as in Cannon
(2021)), c-PIPPET can more precisely describe and visualize the process
by which perceived beat phase may or may not realign over the course
of a syncopated rhythm. In Fig. 6, we illustrate a rhythm that can be
perceived in two ways: either as a highly syncopated rhythm with the
majority of sound events taking place off the beat, or as a simple rhythm
5

𝜔

with most events taking place on the beat. Two c-PIPPET simulations
are initialized with a metronome count-in such that the subjective beat
is initially placed in the highly syncopated alignment.

In the first simulation, 𝜎𝜙 is set to a lower value, giving the model
more confidence in its estimated phase over time. As a result, per-
ceived beat phase continues to advance steadily over the course of
the syncopated rhythm, and the rhythm continues to be perceived as
syncopated. In the second simulation, 𝜎𝜙 is set to a higher value, giving
the model less confidence in its phase estimate. In this simulation,
phase uncertainty accumulates over the course of three off-beat events,
and by the third the distribution over phase is broad enough that the
phase is realigned to place this event on the beat. In effect, the model
is so uncertain about phase that it pays no attention to its own estimate
and instead aligns the event with the phase at which events are most
likely to occur, i.e., the beat.

c-PIPPET gives a clear, intuitive account of phase realignment dur-
ing a syncopated rhythm: it is a result of the accumulation of phase
uncertainty that eventually leads the model to discount its phase es-
timate and instead align events with whatever part of the metrical
expectation template fits them best. When the model does not reset
during a syncopated rhythm, it generally means that the model is
capable of sustaining two different phase alignments with the rhythm;
in the language of dynamical systems, the oscillator/forcing system is
bistable. This bistability gives way with changing parameters, leading
to monostability (and thus mandatory phase realignment) under the
forcing rhythm.

3. c-PATIPPET: Cycle phase and tempo inference

We now incorporate the process of inferring stimulus tempo into
an inference model. To do so, we propose that the observer aims to
maintain a representation of a distribution over stimulus phase and
tempo, and that they do so in light of a generative model of rhythm
in which tempo may vary and drift over time.

3.1. Generative model

The generative model is largely identical to the c-PIPPET generative
model except that phase is assumed to advance at a variable rate
(tempo) 𝜔:

�̇� = 𝜔 + 𝜎𝜙𝐵
𝜙
𝑡

And 𝜔 is assumed to gradually vary up and down at random as a
Wiener process with drift rate 𝜎𝜔, while drifting toward a preferred
tempo 𝜔𝑝 at rate 𝑘:

̇ = 𝑘(𝜔 − 𝜔) + 𝜎 𝐵𝜔

𝑝 𝜔 𝑡
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Fig. 5. Phase tracking of a two-event sequence, with expectation for events at intervals of 2𝜋. (A) Tracking cycle phase over time, estimated phase 𝜇𝑡 resets, and phase uncertainty
𝑉𝑡 contracts, at each of the two sound events 𝑒1 and 𝑒2 (marked by dashed lines) at times 𝑡1 and 𝑡2 respectively. Phase uncertainty 𝑉𝑡 grows between events. (B) Phase and
amplitude of the oscillator 𝑍𝑡 corresponding to this c-PIPPET solution, plotted over time, with dashed lines representing the instantaneous resets at sound events. (C) Distributions
over phase and their corresponding oscillator vectors just before and just after the event at time 𝑡1.
In simulations below, 𝑘 is assumed to be zero for simplicity. Finally,
the expectation function is made a function of both phase and tempo
in order for 𝑣𝑗 to reflect a constant precision of event expectation with
respect to time rather than phase:

𝜆(𝜙,𝜔) =
∑

𝑗
𝜆𝑗𝜑𝑤𝑟

(

𝜙|𝜙𝑗 , 𝑣𝑗𝜔
2) (6)

A full Bayesian solution to this inference problem would main-
tain a full (infinite-dimensional) posterior distribution over phase and
tempo at all times. There are several ways the brain might reduce
the dimensionality of the posterior distribution to make the problem
tractable.

3.2. Variational c-PATIPPET

Just as the variational solution to the phase inference problem main-
tains a wrapped Gaussian posterior, a complete variational solution
the phase and tempo inference problem would maintain a bivariate
Gaussian distribution over phase and tempo, wrapped around the circle
in the phase direction but not the tempo direction (i.e., on the cylinder).
A non-wrapped bivariate distribution is most straightforwardly param-
eterized by a two-dimensional mean and a covariance matrix with three
degrees of freedom: the variance of the distribution in each of the two
directions and the covariance between the two variables. The situation
is not as straightforward on the cylinder, but one analogous way to
parameterize a bivariate Gaussian posterior distribution 𝑝(𝜙,𝜔) is in
6

terms the five dynamic variables 𝜇𝑡, 𝛺𝑡, 𝑉
𝜙
𝑡 , 𝑉 𝜔

𝑡 , and a scalar 𝑆𝑡 similar
to covariance.

𝑍𝑡 ∶= E[𝑒𝑖𝜋𝜙] = ∫𝜔,𝜙
𝑒𝑖𝜋𝜙𝑝𝑡(𝜙,𝜔)

is the complex oscillator-like variable that yields 𝜇𝑡 and 𝑉 𝜙
𝑡 ;

𝜇𝑡 ∶= 𝑎𝑟𝑔(𝑍𝑡) represents the best estimate of the phase of the stimulus;

𝑉 𝜙
𝑡 ∶= −2 ln(𝑍𝑡) represents the uncertainty about that phase estimate;

𝛺𝑡 ∶= E[𝜔] = ∫𝜔,𝜙
𝜔𝑝𝑡(𝜙,𝜔)

is the best estimate of the tempo of the stimulus;

𝑉 𝜔
𝑡 ∶= E[(𝜔 −𝛺𝑡)2] = ∫𝜔,𝜙

(𝜔 −𝛺𝑡)2𝑝𝑡(𝜙,𝜔)

is the uncertainty about that tempo estimate; and a final variable 𝑆𝑡
quantifying the dependency between the estimates of 𝜙 and 𝜔 (much
like a covariance, but better suited to the cylinder) is produced using
the ansatz

𝑝𝑡(𝜙,𝜔) = 𝜑(𝜔|𝛺𝑡, 𝑉
𝜔
𝑡 )𝜑𝑤𝑟(𝜙|𝜇𝑡 + 𝑆𝑡(𝜔 −𝛺𝑡), 𝑉

𝜙
𝑡 )

which allows the joint distribution to take the form of a partially-
wrapped 2D Gaussian with a variable slant 𝑆𝑡 over the face of the
cylinder. This ansatz distribution is illustrated in Fig. 7. In the Deriva-
tions section, these variables are discussed further, and equations are
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Fig. 6. Tracking phase of a syncopated rhythm with more stimulus events in metrically weak positions (red dots and notes) than metrically strong positions (blue dots and notes).
𝜇𝑡 and 𝑉𝑡 are displayed over time as in Fig. 5. (A) When 𝜎𝜙 (the phase noise assumed by the generative model, which determines the rate of accumulation of phase uncertainty)
is set to the lower value of 0.3, the c-PIPPET model treats the first event as the on-beat and maintains this alignment loyally, as illustrated by the placement of the bar line in
the music notation below. Beats are perceived (estimated phase crosses zero) on the intended beat (blue dots). (B) When 𝜎𝜙 is set to the higher value of 0.4, the accumulation of
phase uncertainty leads the model to align the metrically weak events with the perceived beat, as illustrated by the placement of the bar line in the music notation below. By the
end, beats are perceived (estimated phase crosses zero) at points in the stimulus that were originally aligned to be off the beat (red dots).
derived describing their evolution over time and their resetting at
events for a particular metrical expectation template 𝜆(𝜙,𝜔).

This solution corresponds roughly to the adaptive oscillator models
discussed above, in which a single oscillator adapts both its phase (in
this case, 𝜇𝑡) and its intrinsic frequency (in this case, 𝛺𝑡) in response
to the temporal structure of its forcing. This correspondence is mapped
out more fully in Section 4.1.

Variational c-PATIPPET behavior
Although the formula describing the evolution of the posterior is

complex, the general dynamics in most cases are relatively straightfor-
ward. Between sound events:

• The phase mean of the posterior 𝜇𝑡 advances steadily at rate 𝛺𝑡.
• The tempo mean of the posterior 𝛺𝑡 drifts toward the preferred

tempo 𝜔𝑝 at rate 𝑘.
• Tempo uncertainty 𝑉 𝜔

𝑡 grows at a rate determined by the tempo
noise 𝜎𝜔 assumed in the generative model, but its growth is
gradually reigned in if centralized tempo drift rate 𝑘 is nonzero.

• The growth of phase uncertainty 𝑉 𝜙
𝑡 is effectively the sum of

uncertainty accumulation due to phase noise 𝜎𝜙 in the generative
model, and uncertainty accumulation due to tempo uncertainty
𝑉 𝜔
𝑡 . High tempo uncertainty increases the rate of growth of phase

uncertainty.
• 𝑆𝑡 grows proportionate to time elapsed since the last precisely

predicted event, as future judgements about tempo and phase
become more codependent — e.g., if a sound event later implies
7

Fig. 7. Illustration of a distribution over phase and tempo inferred by the variational
c-PATIPPET model. A gaussian-like ansatz distribution on the phase/tempo cylinder is
parametrized by the expected value of phase on the circle 𝜇𝑡, the expected tempo 𝛺𝑡, its
phase variance 𝑉 𝜙

𝑡 , its tempo variance 𝑉 𝜔
𝑡 , and the slope 𝑆𝑡 describing the dependency

of phase on tempo (similar to a covariance).
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Fig. 8. A variational c-PATIPPET model responds to an increase and then to a decrease in metronome tempo. (A) Plots of the expectation template for events over stimulus phase
𝜆(𝜙) and its log. (Note that the template 𝜆(𝜙) is also a function of tempo, as per Eq. (6) — here it is plotted at an intermediate tempo of 108 beats per minute (bpm).) (B) is
the example of an increase in tempo (from 93 bpm to 111 bpm), and (C) the decrease in tempo (from 11 bpm to 93 bpm). In both (B) and (C), the tempo change starts with an

event marked in red, estimated phase 𝜇𝑡 is shaded with a radius of uncertainty 2
√

𝑉 𝜙
𝑡 , and estimated tempo 𝛺𝑡 is shaded with a radius of uncertainty 2

√

𝑉 𝜔
𝑡 . The slope 𝑆𝑡 of the

dependence between phase and tempo increases between sound events and resets to near zero at events. Increases in the hazard rate 𝛬𝑡 (the probability with which events are
expected) realign with the metronome as the tempo estimate is adjusted.
that the stimulus phase is further advanced than expected, it also
implies that the tempo is faster than expected.

At each sound event that occurs when 𝜇𝑡 is close to the phase of an
expected event, 𝜇𝑡 resets to place the estimated stimulus phase closer
to the expected event phase; 𝛺𝑡 increases if the event is earlier than
expected and decreases if it is later than expected; phase uncertainty
𝑉 𝜙
𝑡 and tempo uncertainty 𝑉 𝜔

𝑡 decrease; and 𝑆𝑡 resets to near zero.
In Fig. 8, we plot the dynamics of these variables as variational c-

PATIPPET infers phase and tempo over the course of a tempo-changing
metronomic sequence.

As a demonstration that this model is capable of inferring phase
and tempo from complex rhythms, we equipped the model with a
8

metrical template representing a subdivided beat and presented it with
a ‘‘missing pulse’’ rhythm – a rhythm with no spectral power at the
frequency of the beat due to equal numbers of events at strong and
weak metrical positions (see Tal et al. (2017)) – at two different tempi.
In Fig. 9, we show that the tempo and beat phase are successfully
inferred at both tempi, and that as a result, the model begins to
anticipate beats at the appropriate moments shortly after the rhythm
starts.

3.3. Gradient c-PATIPPET

In variational c-PATIPPET, we hypothesized that the observer per-
formed approximate phase and tempo inference by approximating the



Journal of Mathematical Psychology 122 (2024) 102869J. Cannon and T. Kaplan
Fig. 9. A variational c-PATIPPET model infers the tempo for a complex ‘‘missing pulse’’ rhythm, where equally many events occur at metrically weak and strong positions, at
a fast tempo (120 bpm) and at a slow tempo (86 bpm). (A) The metrical expectation template includes weakly expected even subdivisions of the beat. Its log is included to
emphasize the presence of subdivision expectations at ±𝜋. (B) The stimulus rhythm in music notation. (C) and (D) The model responds to the faster and then the slower stimulus,
which start at the event marked in red. In both cases, it quickly adjusts its estimated tempo appropriately and aligns its pulses of event expectancy (hazard rate 𝛬𝑡) to the beat.

Rows are the same as Fig. 8.
2D distribution over phase and tempo with a Gaussian distribution
whose means and covariances are continuously updated. Here we pro-
pose another plausible hypothesis closely related to gradient frequency
neural network models discussed above, in which a collection of cou-
pled phase/amplitude oscillators with a range of intrinsic frequencies
respond to rhythmic forcing, and underlying stimulus periodicities
are picked out by the oscillators responding with high amplitude.
As illustrated in Fig. 10, we assume that the observer maintains a
distribution over stimulus phase and tempo by slicing phase/tempo
space into 𝑁 discrete tempo bins 𝜔[𝑖] of width 𝛥𝜔. The distribution
9

𝑝(𝜙,𝜔) is approximated by a discrete set of 𝑁 functions 𝑝(𝜙,𝜔[𝑖]) over
phase 𝜙. Each of these functions is a product of a distribution 𝑝(𝜙|𝜔[𝑖])
conditioned on tempo bin 𝜔[𝑖] and a probability density 𝑃 [𝑖]

𝑡 where
𝑃 [𝑖]
𝑡 𝛿𝜔 is the probability that the tempo is indeed in bin 𝑖:

𝑝(𝜙,𝜔[𝑖]) = 𝑃 [𝑖]
𝑡 𝑝(𝜙|𝜔[𝑖])

The conditional distribution for each bin 𝑖 is approximated as a
wrapped normal:

[𝑖] [𝑖] [𝑖]
𝑝(𝜙|𝜔 ) = 𝜑𝑤𝑟(𝜙|𝜇𝑡 , 𝑉𝑡 )
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Fig. 10. Illustration of a distribution over phase and tempo inferred by the gradient
c-PATIPPET model. A distribution on the cylinder is discretized into a collection
of functions 𝑝(𝜙,𝜔[𝑖]) over phase 𝜙. These functions are described by the product
of Gaussian conditional distributions 𝑝(𝜙|𝜔[𝑖]) parametrized by their means 𝜇[𝑖]

𝑡 and
variances 𝑉 [𝑖]

𝑡 (not shown), and multipliers 𝑃 [𝑖]
𝑡 representing the posterior marginalized

over phase (i.e., 𝑃 [𝑖]
𝑡 𝛥𝜔 is the probability that 𝜔 = 𝜔[𝑖] at time 𝑡).

For each tempo bin 𝑖, the variables 𝜇[𝑖]
𝑡 and 𝑉 [𝑖]

𝑡 represent the estimated
phase of the stimulus and its accompanying uncertainty, conditioned
on the stimulus’s instantaneous tempo being within tempo bin 𝜔[𝑖].
Thus, the dynamic distribution over continuous phase and discrete
tempo is fully characterized by a set of 3𝑁 dynamic variables: 𝜇[𝑖]

𝑡 ,
𝑉 [𝑖]
𝑡 , and 𝑃 [𝑖]

𝑡 , where 𝜇[𝑖]
𝑡 , 𝑉 [𝑖]

𝑡 can be recovered from the state of a
c-PIPPET oscillator-like variable 𝑍[𝑖]

𝑡 . Thus, like a gradient frequency
neural network, the gradient c-PATIPPET model consists of a bank
of oscillators with a range of intrinsic frequencies (though with the
addition of a corresponding bank of scalars 𝑃 [𝑖]

𝑡 ). These variables evolve
over time according to a repeated application of Bayes’ rule at each 𝑑𝑡
time step that integrates the observation of presence or absence of a
sound event into the estimated distribution over phase and tempo.

In the Derivations section, we show that the evolution of these
variables is described by a set of coupled differential equations with
instantaneous resetting at events. The dynamic variables associated
with tempo bin 𝜔[𝑖] are coupled with those of the bins above and below.
These couplings exist because of the possibility of the stimulus tempo
in the generative model drifting from one bin into an adjacent bin. The
effect of the coupling is to keep the phases of adjacent oscillators 𝑍[𝑖]

𝑡
close together and to allow the probability mass represented by 𝑃 [𝑖]

𝑡 to
diffuse outward.

Gradient c-PATIPPET behavior
In general, between sound events:

• The phase mean 𝜇[𝑖]
𝑡 of the posterior conditioned on tempo 𝜔[𝑖]

advances steadily at rate 𝜔[𝑖].
• 𝑃 [𝑖]

𝑡 , the marginalized distribution over tempos 𝜔[𝑖], diffuses out-
ward at a rate that increases with increasing 𝜎𝜔 (the magnitude of
tempo noise in the generative model), approaching a steady-state
normal distribution centered on 𝜔𝑝 if 𝑘 > 0.

• The variance 𝑉 [𝑖]
𝑡 of each conditional distribution increases at a

rate that increases with increasing 𝜎𝜙 (the magnitude of phase
noise in the generative model), and further increases due to
diffusion from adjacent conditional distributions.
10
At each sound event, conditional estimated stimulus phase 𝜇[𝑖]
𝑡 resets

closer to the expected event phase and 𝑉 [𝑖]
𝑡 decreases. 𝑃 [𝑖]

𝑡 increases if
𝜇[𝑖]
𝑡 was close to an expected event phase and decreases if it was far,

reflecting the inference that whichever possible tempo corresponded to
the most accurate prediction is the most likely current tempo.

In Fig. 11 (using the same generative model and stimuli as Fig. 8),
we simulate and plot the evolution of these variables as gradient c-
PATIPPET infers phase and tempo over the course of tempo-changing
metronomic sequences. In Fig. 12 (using the same generative model
and stimuli as Fig. 9), we simulate and plot the response of gradient c-
PATIPPET to the same complex ‘‘missing pulse’’ rhythm at two different
tempi.

3.4. Parameter fitting

To reconcile this modeling framework more thoroughly with human
behavior, we fit a set of variational c-PATIPPET parameters to an
existing data set. In this work, Repp (2007), participants listened to a
steady click at two different tempi, with and without subdivisions, and
tapped once on a specified beat. Immediately preceding the tap, some
combination of beats and subdivisions were shifted in time, and the
effect of these shifts was observed in the timing of the tap (Fig. 13A).
This data set was ideal for our purposes because it eliminated any per-
ceptual effects of ongoing finger tapping, allowing the single finger tap
to serve as something like a direct readout of perceived rhythm phase.
A c-PATIPPET model was assumed to produce a tap when its phase
passed zero on the appropriate cycle. The model was given a template
in which events were expected at the quadruplet subdivision level, with
expectations at the second and fourth event in each quadruplet assumed
to be identical and 𝜆0 set to zero. Parameters were fit by hand in an
effort to match the tap timing responses for trials with no subdivisions,
duplet subdivisions, and quadruplet subdivisions.

The model had nine parameters, but the fit was relatively insensitive
to the values of 𝜆𝑗 , leaving five key parameters: 𝑣1, 𝑣3, 𝑣2∕4, 𝜎𝜔, and
𝜎𝜙. The best fit was achieved with 𝑣1 = 0.0001, 𝑣3 = 0.0003, 𝑣2∕4 =
0.0025, 𝜎𝜙 = 0.3, and 𝜎𝜔 = 0.15. The resulting template is shown in
Fig. 13B, and the quality of the fit to experimental data is shown in
Fig. 13C. Most noteworthy is that the fits reproduce the relationships
between tap timing responses at the 540 ms period and at the 720 ms
period. When no events intervene between a timing shift and the tap,
tap timing shifts more at the slower tempo; when unshifted events do
intervene, tap timing shifts more at the faster tempo. Both of these
effects arise naturally from the steady accumulation of phase and tempo
uncertainty during the silences between sound events. To the best of
our knowledge, no existing oscillator models account for differences in
the phase resetting function at different tempi.

4. Discussion

We have shown through derivation and simulation that modeling
rhythm perception as inference leads naturally to oscillators, and thus
that the inference approach to modeling rhythm perception possesses
much of the descriptive power and flexibility of the oscillator approach.
The process of maintaining an up-to-date posterior distribution on the
circular phase of a cyclically patterned stimulus (c-PIPPET) is described
by the dynamics of a damped oscillator, where its radius represents the
momentary precision of the phase estimate and its resetting function at
each sound event is determined by the pattern and precision of event
expectations over phase. And the process of maintaining an up-to-date
posterior on the phase and tempo of such a stimulus (c-PATIPPET) is
described either by the dynamics of a set of five dynamic variables, two
of which act like the phase and amplitude of an oscillator and one of
which controls that oscillator’s frequency (variational approximation),
or by the dynamics of a coupled row of damped oscillators with a
corresponding coupled row of scalars (gradient approximation).
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Fig. 11. A gradient c-PATIPPET model with the same parameters as the variational model in Fig. 8 responds to the same changes in metronome tempo. (A) The expectation
template (and its log) are the same as in Fig. 8. (B) is the example of an increase in tempo, and (C) the decrease in tempo. In both, the first event at the new tempo is marked in
red. The collection of oscillators are represented by a spectrum of colors, with darker colors associated with faster tempo. The phases 𝜇[𝑖]

𝑡 of these oscillators are plotted opaquely
only if their associated probability densities 𝑃 [𝑖]

𝑡 are greater than an arbitrary threshold of 0.4, highlighting the phases of the oscillators representing the most likely range of
tempi. At the tempo changes, a different (faster or slower) set of oscillators assumes higher probabilities. We integrate over the phase/tempo distribution to calculate an expected
value of tempo E[𝜔] over time. Increases in the hazard rate 𝛬𝑡 (the probability with which events are expected) realign with the metronome as the tempo estimate is adjusted.
These mappings from inference problems onto dynamical systems
that approximate their solutions require assumptions about the
parametrization of the observer’s posterior distribution, which are
effectively assumptions about what variables are represented in the
brain during auditory entrainment. c-PIPPET makes the ‘‘variational’’
assumption that the observer’s distribution on phase is represented by
just two parameters describing the mean and variance of a Gaussian
distribution wrapped on the circle. Variational c-PATIPPET assumes
that phase and tempo estimates are represented by the parameters
of a wrapped multivariate Gaussian. Gradient c-PATIPPET makes the
variational assumption for phase, and posits that the tempo axis is
11
chopped into discrete bins, allowing a distribution over phase and
tempo to be represented by a few variables for at each bin: a mean
phase, a phase variance, and the probability that the stimulus tempo
is the tempo associated with that bin. By making different assumptions
about these distributions, we could derive other valid algorithms for
phase and tempo inference; using these algorithms as models of rhythm
cognition would be positing that different parameters of the distri-
butions are represented in the observer’s brain. We chose these sets
of assumptions because they highlight routes by which the inference
perspective on rhythm perception can acquire key attributes of promi-
nent oscillator models, and because, as proponents of oscillator models
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Fig. 12. A gradient c-PATIPPET model infers a phase and tempo distribution from a complex ‘‘missing pulse’’ rhythm at a fast and a slow tempo (same stimuli and generative
model as Fig. 9). (A) The metrical expectation template includes weakly expected subdivisions of the beat, as in Fig. 9. (B) The stimulus rhythm in music notation. (C) and (D)
The model responds to the faster and then the slower stimulus, and in both cases it successfully adjusts its estimated tempo and aligns it pulses of event expectancy (hazard rate
𝛬𝑡) with the beat. Rows are the same as Fig. 11.
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Fig. 13. (A) Illustration of the experiment performed in Repp (2007), reproduced with permission. In this experiment, the participant signals the position of a specific anticipated
beat with a single finger tap. Leading up to the tap, the participant listens to a metronome with or without subdivisions. In each of the seven conditions illustrated here, a different
set of the sound events immediately preceding the tap is time-shifted, and the effect of this shift on tap timing is measured. (B) Above, the results of this experiment are reproduced
with permission. Bar heights represent the relationship between the sound event timing shift magnitude and resulting tap time shift magnitude, expressed as a percentage ratio of
tap time shift to event time shift. Below, a variational c-PATIPPET model has been fit by hand to these results by tuning five parameters. Note that the relationships between the
tap timing shift at the faster and the slower tempo are reproduced by the model for each condition. (C) The metrical expectation template corresponding to the identified model
fit is plotted over phase. (Note that the template 𝜆(𝜙) is also a function of tempo, as per Eq. (6) — here it is plotted at the faster of the two tempi.).
have argued, such dynamics could plausibly be implemented by neural
circuits.

4.1. Oscillators with cognitive interpretations

As dynamical systems, our oscillatory inference models consist of os-
cillators, and as a result they attain the dynamical range and descriptive
repertoire of oscillator models of rhythm perception. However, their
variables maintain comprehensible cognitive/representationalist inter-
pretations with theoretical grounding. We highlight the correspondence
with oscillator models and the meanings of the static and dynamic
variables below.

Formally, the basic c-PIPPET model is simply a pulse-forced damped
linear oscillator with a special nonlinear phase/amplitude resetting
function.3 Its variables can be interpreted in terms of an inference
process based on a generative model:

• The phase of a damped oscillator corresponds to the mean of a
distribution over possible stimulus phase.

• The radius represents the precision of this distribution.
• The damping of the oscillator represents the noisiness of stimulus

phase in a generative model, which paces the progressive loss of
phase precision over time in the absence of rhythmic events, and
determines the flexibility of the inference process in response to
phase shifts.

• The phase (and radius) resetting function at events is derived from
the pattern of event expectancy over stimulus phase, and tends
to reset estimated phase to align with phases at which events are
strongly expected.

3 This equivalence is conditional on the assumption of a weak expectation
template that allowed us to go from Eq. (4) to Eq. (5) and neglect the influence
of unfulfilled expectations on estimated phase — without this assumption, the
oscillator’s ODE acquires a nonlinear term.
13
In gradient c-PATIPPET, we have a network of variables very similar
to those used in (oscillator-based) gradient frequency neural network
models, but that can be fully interpreted as an inference algorithm:

• The activity of each oscillator in the gradient frequency bank
represents a distribution over phase conditioned on the possibility
that the current stimulus tempo corresponds to the natural tempo
of that oscillator.

• The coupling strength between oscillators of adjacent frequencies
represents the rate and direction of tempo drift in a genera-
tive model, which paces the progressive loss of tempo precision
over time in the absence of rhythmic events and determines the
flexibility of the inference process in response to tempo shifts.

Gradient c-PATIPPET also includes a set of variables 𝑃 [𝑖]
𝑡 that are not

included in canonical Gradient Frequency Neural Networks. Without
the additional information provided by these variables, the amplitudes
of the bank of oscillators conflate the precision of a phase estimate
with the distribution over tempi. However, it is possible that corre-
lations between 𝑃 [𝑖]

𝑡 and 𝑉 [𝑖]
𝑡 could allow this algorithm to be readily

approximated without this additional set of dynamic variables.
The basic mechanic of underlying phase and tempo inference in

variational c-PATIPPET looks very much like previous ‘‘adaptive os-
cillator’’ models of auditory entrainment to rhythmic stimulation that
consist of a single phase oscillator which corrects its phase and adapts
both its period and the precision of its expectations according to the
earliness or lateness of expected events (Large & Jones, 1999; Large
& Kolen, 1994; Large & Palmer, 2002; McAuley, 1995). In variational
c-PATIPPET,

• Basic phase correction is accomplished by dynamic 𝜇𝑡.
• Period correction is made possible by a combination of dynamic
𝛺𝑡 and 𝑆𝑡: 𝑆𝑡 acts as a timer from one event to the next, and the
correction to estimated tempo 𝛺𝑡 at each event is proportionate to
the accumulated 𝑆𝑡. This mechanic allows for period corrections
that are roughly linear with respect to current period, but makes
different predictions about how period correction should change
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with the presence of subdividing events leading up to an event
timing perturbation.

• Event prediction precision increases over the course of extended
regular sequences through a combination of dynamic phase and
tempo certainty, which makes the peaks in the hazard function
signifying expectations sharper over the course of entrainment to
a steady rhythm.

.2. Oscillatory inference models raise new questions

Although this family of models is not formally very different from
xisting oscillator-based dynamical systems models of beat percep-
ion, the cognitive/representational interpretations of the parameters
nd moving parts can help frame the generation of new questions,
ypotheses, and empirical experiments. For example:

• In c-PIPPET-based models, the accumulation of phase and tempo
uncertainty – i.e., the tendency to lose a sense of the beat during
silent intervals – accounts for differences in the response to
event timing shifts across different tempi, as demonstrated in Sec-
tion 3.4. Specifically, the models make larger phase corrections
when there has been more time for uncertainty to accumulate
since the last event. Accumulating uncertainty also accounts for
the tendency toward phase realignment of ambiguous rhythms
simulated in Section 2.3. Are these two effects really attributable
to the same underlying dynamic of uncertainty? If so, measures
of the two processes should correlate across individuals, and may
covary with other individual differences. For example, individuals
with ADHD, who seem to lose track of the beat at low tempi
(Gilden & Marusich, 2009), may show more rapid accumulation
of uncertainty.

• In these models, the accumulation of uncertainty is directly linked
to the phase and tempo noise 𝜎𝜙 and 𝜎𝜔 in the observer’s gener-
ative model. Do humans learn to base their phase/tempo uncer-
tainty accumulation on their brain’s actual levels of phase/tempo
noise? Uncertainty accumulation could be measured either
through the scaling of the phase-resetting function over tempi
or through the tendency toward phase realignment during com-
plex rhythms. Phase/tempo noise could be quantified through
performance precision in timing and tempo discrimination tasks.

• Similarly, the precision of event expectations and the strength of
resulting phase corrections at events is a function of perceived
event timing noise 𝑣𝑗 in the generative model. Do humans show
the same relationship between perceptual phase error correction
(as measured by Repp (2007), described in Section 3.4) and
auditory timing noise (as measured perhaps by the variance in
delays in auditory evoked EEG responses)?

• Both c-PATIPPET models are initialized with a prior over tempi,
and (for 𝑘 > 0) return to this prior given sufficient time. This
prior seems closely related to the various measures of ‘‘pre-
ferred tempo’’ and ‘‘spontaneous motor tempo’’ in the rhythm
psychophysics literature. Does this prior differ by individual?
Do these differences reflect differences in exposure to different
tempi? Such systematic differences might arise from differences
in the tempo of the beats we hear most often: the cadence of our
own gait (Dahl et al., 2014) or our parents’ gait (Rocha et al.,
2021).

.3. Modeling philosophy

We have shown that dynamic inference of phase and tempo can be
erformed by a bank of oscillators or a frequency adapting oscillator,
artially reconciling the perspectives of the two prominent threads of
hythm perception modeling. However, an inference perspective is in-
onsistent with philosophical commitments that often come along with
14

ynamical systems modeling. Proponents of dynamical systems models
of behavior argue that if the existence of internal ‘‘representations’’ of
hidden world states is not necessary to explain a system, then there
is no reason to invoke them (Stepp & Turvey, 2010). Indeed, many
aspects of sensorimotor synchronization to rhythm can be explained
purely in terms of interacting oscillators (Tognoli et al., 2020). In
response to this point, we would like to point out that, in theory,
all physical phenomena should be explainable in terms of dynamical
systems underpinned by physical laws. That does not, however, mean
that introducing an intermediate level of explanation is pointless or
meaningless: just as chemistry is built on top of physics to provide more
compact explanations of observed phenomena, so a quantitative science
of ‘‘representations’’ and ‘‘generative models’’ can be built on top of
dynamical systems to more compactly explain our subjective perceptual
experiences and our resulting behaviors. The theoretical foundations
of this construction have been laid by work deriving the Free Energy
Principle and the resulting dynamics of probabilistic representations
from underlying physics (Ramstead et al., 2023). At a more practical
level, Poldrack (Poldrack, 2021) notes that neurophysiologists are in-
creasingly turning to a ‘‘fluid combination of representationalist and
dynamicist thinking’’ that treats network states as representations of
the world while acknowledging that the formation and transformation
of these states is orchestrated according to dynamical rules.

4.4. Model comparison and validation

The different models presented here can be compared with each
other and with other models by two metrics: neurophysiological and
behavioral. From the neurophysiological standpoint, if the phases of
multiple oscillators of different intrinsic frequencies can be identified
in neural recordings, or if the underlying physiology is shown to
support multiple oscillators of different frequencies, these observations
would support gradient c-PATIPPET as the more plausible model of
human rhythm; conversely, if signals representing tempo and/or tempo
uncertainty can be identified, or if a neural mechanism is found for
an adjustable-frequency neural oscillator, this would favor variational
c-PATIPPET as more plausible. From the behavioral standpoint, there
are likely to be specific situations in which variational and gradient
c-PATIPPET behave differently due to the more stringent assumptions
on the variational model. For example, gradient c-PATIPPET should
allow the observer to simultaneously keep two beats at different tempi,
at least transiently, whereas variational c-PATIPPET precludes this
possibility by design. By comparing model performance to human
performance in these situations, we could determine which model is
more behaviorally accurate.

4.5. Limitations and future directions

This work should be considered a preliminary proof-of-concept
showing that dynamical systems that act like oscillators can perform
formal inference about rhythmic stimuli. We have demonstrated that it
is possible to match model parameters to the results of a psychophysics
experiment, but we have not validated or fit the models with targeted
experimentation. Future work will aim to refine these models and tune
them to human behavior across a range of perceptual tasks.

One potentially fruitful direction for model development would
be to introduce noise into the inference process itself (as opposed to
just the generative model) which might account for the element of
randomness inherent in human judgements of rhythmicity and timeli-
ness. Further model development might also require refinement of the
generative model underlying the inference process. For example, the
assumption that tempo drifts continuously may not allow the observer
much leeway to recover a sense of the beat following large shifts in
tempo as quickly as a human listener; if this is the case, a generative
model that assumes that tempo can change via jump discontinuities
may prove a better description of the logic underlying human rhythm

perception. Finally, context-dependent changes in human perception
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could be modeled by introducing additional dynamic variables into
the generative model, which would be estimated dynamically during
the inference process. For example, possible effects of a history of
stimulus jitter or tempo change on the observer’s phase and tempo
flexibility could be accounted for by introducing dynamic estimates
of phase and tempo noise similar to the estimates of ‘‘volatility’’ com-
monly assumed in hierarchical predictive processing models (Mathys
et al., 2011, 2014). Similarly, expectations that an accelerating stim-
ulus would continue to accelerate (as modeled by the ‘‘anticipation’’
module of the ADAM model (Van der Steen & Keller, 2013)) could be
represented by introducing a dynamic estimate of the current rate of
tempo change. And listeners’ rapid adaptation to changes in the pattern
of subdivisions of the beat (e.g., duplets vs. triplets) could be modeled
as dynamic selection of an metrical expectation template, as in Kaplan
et al. (2022).

Metrical structure in music generally involves multiple hierarchical
levels of periodicity, but here we have only modeled a single beat
level. This is at least partially justified by the perceptual primacy of
the beat level of periodicity (London, 2004), and allows the model
to describe entrainment by non-isochronous subdivisions. However, it
does not explain how the metrical expectation templates describing
beat subdivisions arise, does not account for biases toward integer
ratios at levels below the beat (Jacoby & McDermott, 2017), and does
not account for structure above the level of the beat. Extending it to
describe multiple levels of periodicity would first require augmenting
the generative model, perhaps by including faster or slower phase
variables that couple tightly to the phase and tempo of the beat.
Dynamic inference with this generative model would likely take the
form of a hierarchy of coupled circular variables, making the dynamics
of inference even more closely resemble the dynamics of a gradient
frequency neural network model.

If the generative model is developed further, it is likely to become
analytically intractable. The theory of Predictive Processing poses pre-
diction error minimization as the canonical scheme for approximating
intractable Bayesian solutions to dynamic inference problems, in part
due to its neural plausibility. Thus, a future direction may be to replace
the analytical solutions used here with a more powerful prediction-
error-minimizing algorithm that also might be more easily mapped onto
specific brain mechanisms.

The phase and tempo inference problems formulated here describe
the perception of rhythmic structure, but are insufficient to describe
motor entrainment to rhythm. The canonical Predictive Processing
approach to including movement in this picture would be to draw on
the theory of Active Inference (Adams et al., 2013; Friston, 2010),
which posits that physical movement serves to minimize surprisal by
creating the sensations that the organism expects. A PIPPET model with
entrained tapping might encode a tapping goal by as a template of
expectations for the timing of motor feedback relative to the rhythm.
This avenue will be explored in future work.
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Appendix A. Derivations

Here we derive equations describing the variational Bayesian es-
timation of stimulus phase in c-PIPPET and of phase and tempo in
c-PATIPPET.

A.1. c-PIPPET

The wrapped Gaussian 𝜑𝑤𝑟 takes the form:

𝜑𝑤𝑟(𝜙|𝜇, 𝑉 ) ∶= 1
√

2𝜋𝑉

∞
∑

𝑞=−∞
𝑒−

(𝜙−𝜇−2𝜋𝑞)2
2𝑉

It can also be written as a sum of Fourier components:

𝜑𝑤𝑟(𝜙|𝜇, 𝑉 ) = 1
2𝜋

∞
∑

𝑛=−∞
𝑒−

𝑛2𝑉
2 +𝑖𝑛(𝜙−𝜇)

If we place the stimulus phase on the unit circle in the complex
lane, 𝑒𝑖𝜙, both parameters of the wrapped normal are uniquely speci-
ied by the complex first moment of the wrapped normal distribution:

=E[𝑒𝑖𝜙] = ∫𝜙
𝑒𝑖𝜙𝜑𝑤𝑟(𝜙|𝜇, 𝑉 )

=∫𝜙
𝑒𝑖𝜙 1

2𝜋

∞
∑

𝑛=−∞
𝑒−

𝑛2𝑉
2 +𝑖𝑛(𝜙−𝜇)𝑑𝜙

=∫𝜙
1
2𝜋

∞
∑

𝑛=−∞
𝑒−

𝑛2𝑉
2 +𝑖(𝑛+1)𝜙−𝑖𝑛𝜇𝑑𝜙

All terms in this sum integrate to zero except the 𝑛 = −1 term, so

=𝑒−
𝑉
2 +𝑖𝜇 (7)

From (Snyder, 1972), we have:

𝑑𝑝𝑡(𝜙) = [𝑝𝑡(𝜙)]𝑑𝑡 + 𝑝𝑡(𝜙)
(

𝜆(𝜙)
𝛬𝑡

− 1
)

⋅ (𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡) (8)

where 𝛬𝑡 ∶= E[𝜆(𝜙)] (with E denoting expectation under distribution
𝑡(𝜙)), 𝑑𝑁𝑡 is the increment in the event count over each 𝑑𝑡 time

step (assumed to be either 1 or 0 with probability 1), and  is the
Kolmogorov forward operator associated with (2):

[𝑝(𝜙)] = − 𝜕
𝜕𝜙

𝑝(𝜙) +
(𝜎𝜙)2

2
𝜕2

𝜕𝜙2
𝑝(𝜙) (9)

As the observer’s distribution over stimulus phase evolves, we will
make the ‘‘variational’’ assumption that it maintains the simple form of
a wrapped normal distribution. We operationalize this assumption by
continuously (i.e., at each 𝑑𝑡 time step) replacing the distribution with
the ‘‘nearest’’ wrapped normal distribution. Measuring ‘‘nearest’’ by KL
divergence, the standard measure of distance between distributions,
this means continuously replacing the distribution with the wrapped
normal that has the same first moment in the complex plane. Thus,
we need only describe how the first moment 𝑍𝑡 of the observer’s
distribution evolves in time, and the full wrapped normal distribution
is specified.

To describe the evolution of 𝑍𝑡:

𝑑𝑍 ∶= 𝑑E[𝑒𝑖𝜙]

=𝑑
[

∫𝜙
𝑒𝑖𝜙𝑝𝑡(𝜙)𝑑𝜙

]

=∫𝜙
𝑒𝑖𝜙𝑑𝑝𝑡(𝜙)𝑑𝜙

rom (8),

= ∫𝜙
𝑒𝑖𝜙

[

[𝑝𝑡(𝜙)]𝑑𝑡 + 𝑝𝑡(𝜙)
(

𝜆(𝜙)
𝛬𝑡

− 1
)

⋅ (𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡)
]

𝑑𝜙

=

[

∫ −𝑒𝑖𝜙 𝜕 𝑝𝑡(𝜙)𝑑𝜙 + ∫
(𝜎𝜙)2 𝑒𝑖𝜙 𝜕2

2
𝑝𝑡(𝜙)𝑑𝜙

]

𝑑𝑡

𝜙 𝜕𝜙 𝜙 2 𝜕𝜙
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+ ∫𝜙
𝑝𝑡(𝜙)

(

𝜆(𝜙)𝑒𝑖𝜙

𝛬𝑡
− 𝑒𝑖𝜙

)

⋅ (𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡)𝑑𝜙

Integrating by parts:

𝑑𝑍 =

[

∫𝜙
𝑖𝑒𝑖𝜙𝑝𝑡(𝜙)𝑑𝜙 − ∫𝜙

(𝜎𝜙)2

2
𝑒𝑖𝜙𝑝𝑡(𝜙)

]

𝑑𝑡

+ ∫𝜙
𝑝𝑡(𝜙)

(

𝜆(𝜙)𝑒𝑖𝜙

𝛬𝑡
− 𝑒𝑖𝜙

)

⋅ (𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡)𝑑𝜙

Rewriting integrals against 𝑝𝑡 as expected values:

𝑑𝑍 =𝑖E[𝑒𝑖𝜙]𝑑𝑡 −
(𝜎𝜙)2

2
E[𝑒𝑖𝜙]𝑑𝑡 +

(

E[𝜆(𝜙)𝑒𝑖𝜙]
𝛬𝑡

− E[𝑒𝑖𝜙]
)

⋅ (𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡)

=

(

𝑖 −
(𝜎𝜙)2

2

)

𝑍𝑡𝑑𝑡 +
(

�̂� −𝑍𝑡
)

⋅ (𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡) (10)

where we have set �̂� ∶= E[𝜆(𝜙)𝑒𝑖𝜙]
𝛬𝑡

.

To calculate 𝛬𝑡 and �̂�, we first write a reduced expression for
𝑡(𝜙)𝜆(𝜙) using the Fourier sum expression of the wrapped normal:

𝑡(𝜙)𝜆(𝜙) =𝜑𝑤𝑟(𝜙|𝜇, 𝑉 )
∑

𝑗
𝜆𝑗𝜑𝑤𝑟(𝜙|𝜙𝑗 , 𝑣𝑗 )

= 1
2𝜋

∞
∑

𝑛=−∞
𝑒−

𝑛2𝑉
2 +𝑖𝑛(𝜙−𝜇) ∑

𝑗
𝜆𝑗

1
2𝜋

∞
∑

𝑚=−∞
𝑒−

𝑚2𝑣𝑗
2 +𝑖𝑚(𝜙−𝜙𝑗 )

= 1
(2𝜋)2

∞
∑

𝑛=−∞

∞
∑

𝑚=−∞

∑

𝑗
𝜆𝑗𝑒

− 𝑛2𝑉
2 −

𝑚2𝑣𝑗
2 +𝑖𝑛(𝜙−𝜇)+𝑖𝑚(𝜙−𝜙𝑗 )

Setting 𝓁 ∶= 𝑛 + 𝑚, we have

𝑝𝑡(𝜙)𝜆(𝜙) =
1

(2𝜋)2

∞
∑

𝓁=−∞
𝑒𝓁𝜙

( ∞
∑

𝑚=−∞

∑

𝑗
𝜆𝑗𝑒

− (𝓁−𝑚)2𝑉
2 −

𝑚2𝑣𝑗
2 −𝑖(𝓁−𝑚)𝜇−𝑖𝑚𝜙𝑗

)

ll terms in the initial sum integrate to zero except 𝓁 = 0, so we have

𝑡 =∫𝜙
𝑝𝑡(𝜙)𝜆(𝜙)𝑑𝜙

= 1
2𝜋

∞
∑

𝑚=−∞

∑

𝑗
𝜆𝑗𝑒

− 𝑚2𝑉
2 −

𝑚2𝑣𝑗
2 +𝑖𝑚𝜇−𝑖𝑚𝜙𝑗

= 1
2𝜋

∞
∑

𝑚=−∞

∑

𝑗
𝜆𝑗𝑒

−𝑚2 𝑉 +𝑣𝑗
2 +𝑖𝑚(𝜇−𝜙𝑗 ) (11)

When 𝑝𝑡(𝜙)𝜆(𝜙) is integrated against 𝑒𝑖𝜙, all terms integrate to zero
except 𝓁 = −1, so we have

�̂� = 1
𝛬𝑡 ∫𝜙

𝑝𝑡(𝜙)𝜆(𝜙)𝑒𝑖𝜙𝑑𝜙

= 1
2𝜋𝛬𝑡

∞
∑

𝑚=−∞

∑

𝑗
𝜆𝑗𝑒

− (𝑚+1)2𝑉
2 −

𝑚2𝑣𝑗
2 +𝑖(𝑚+1)𝜇−𝑖𝑚𝜙𝑗 (12)

Thus, as the rhythm unfolds, the observer’s distribution over stim-
ulus phases is specified by 𝑝𝑡(𝜙) ∶= 𝜑(𝜙|𝜇𝑡, 𝑉𝑡), where 𝜇𝑡 and 𝑉𝑡 are
determined by the evolving complex variable 𝑍𝑡. From (7) we have:

𝜇𝑡 ∶=𝑎𝑟𝑔(𝑍𝑡)

𝑉𝑡 ∶= − 2𝑙𝑜𝑔(|𝑍𝑡|)

and, from (10), 𝑍𝑡 evolves according to a differential equation of the
form

�̇� =
(

𝜔𝑖 − 𝜎2

2

)

𝑍𝑡 − 𝛬𝑡(�̂� −𝑍𝑡)

with 𝑍𝑡 instantaneously resetting to �̂� at any event time.
To simulate variational Bayesian inference on phase, we simulate

the dynamics of 𝑍𝑡 according to (10), approximating sums over 𝑚 by
summing from 𝑚 = −40 to 40.
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A.2. Variational c-PATIPPET

Generative model:

�̇� =𝜔 + 𝜎𝜙𝐵𝑡

̇ =𝑘(𝜔𝑝 − 𝜔) + 𝜎𝜔𝐵𝑡

with events occurring at Poisson rate

𝜆(𝜙,𝜔) =
∑

𝑗
𝜆𝑗𝜑𝑤𝑟

(

𝜙|𝜙𝑗 , 𝑣𝑗𝜔
2)

We assume that the evolving posterior distribution over phase and
tempo takes the form of a continuous family 𝑝𝑡(𝜙,𝜔) of wrapped Gaus-
sians over phase 𝜙, parametrized by tempo 𝜔, with identical variance
𝑉𝑡. These are scaled by a second Gaussian distribution over tempo, and
the means 𝜇𝜔

𝑡 of these wrapped Gaussians are assumed to increase (or
decrease) linearly with tempo.

This distribution can be parameterized in terms of the center of
mass within the cylinder (𝑍𝑡, 𝛺𝑡), the variance 𝑉 𝜔

𝑡 of the Gaussian over
tempo, and the slope 𝑆 of the dependence of 𝜇𝜔

𝑡 on tempo: 𝜇𝜔
𝑡 =

𝜇𝑡 + 𝑆(𝜔 −𝛺𝑡), where 𝜇𝑡 ∶= 𝑎𝑟𝑔(𝑍𝑡).
We can calculate 𝑑𝑝𝑡, the change in the posterior over phase and

empo in a 𝑑𝑡 time step, using (8), where the Kolmogorov forward
perator is

𝑝𝑡 = − 𝜕
𝜕𝜙

(𝜔𝑝𝑡)−
𝜕
𝜕𝜔

(𝑘(𝜔𝑝−𝜔)𝑝𝑡)+
(𝜎𝜙)2

2
𝜕2𝑝𝑡
𝜕2𝜙

+
𝜎𝜙𝜎𝜔
2

𝜕2𝑝𝑡
𝜕𝜙𝜕𝜔

+
(𝜎𝜔)2

2
𝜕2𝑝𝑡
𝜕2𝜔

(13)

Similarly to the derivation above, we calculate the differentials of
expected values over time by taking integrals over the cylinder, sub-
stituting from (13), and then calculating the integrals by parts. We will
calculate 𝑆 at each time step based on a related term, 𝑉 𝜙𝜔 ∶= E[𝜔𝑒𝑖𝜙].

he terms �̂�, �̂�, etc. are defined below.

𝑑𝑍 =𝑑E[𝑒𝑖𝜙] = ∫𝜙,𝜔
𝑒𝑖𝜙𝑑𝑝𝑡𝑑𝜙𝑑𝜔

= −
(𝜎𝜙)2

2
𝑍𝑡𝑑𝑡 + (𝑉 𝜙𝜔

𝑡 +𝛺𝑡𝑧)𝑖𝑑𝑡 + (�̂� −𝑍𝑡)(𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡)

𝑑𝛺 =𝑑E[𝜔] = ∫𝜙,𝜔
𝜔𝑑𝑝𝑡𝑑𝜙𝑑𝜔

=𝑘(𝜔𝑝 −𝛺𝑡)𝑑𝑡 + (�̂� −𝛺𝑡)(𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡)

𝑉 𝜙𝜔 =𝑑E[𝜔𝑒𝑖𝜙] = ∫𝜙,𝜔
𝜔𝑒𝑖𝜙𝑑𝑝𝑡𝑑𝜙𝑑𝜔

=(𝑍𝑡𝑉
𝜔𝑖 + (𝛺𝑡 − 𝑘)𝑉 𝜙𝜔

𝑡 + 𝑘𝑍𝑡(𝜔𝑝 −𝛺𝑡))𝑑𝑡

+ ( ̂𝑉 𝜙𝜔 − 𝑉 𝜙𝜔
𝑡 )(𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡)

𝑑𝑉 𝜔 =𝑑E[(𝜔 −𝛺𝑡)2] = ∫𝜙,𝜔
(𝜔 −𝛺𝑡)𝑑𝑝𝑡𝑑𝜙𝑑𝜔

=(−2𝑘𝑉 𝜔
𝑡 +

(𝜎𝜔)2

2
)𝑑𝑡 + ( ̂𝑉 𝜔 − 𝑉 𝜔

𝑡 )(𝑑𝑁𝑡 − 𝛬𝑡𝑑𝑡)

To calculate 𝑆𝑡 at any time, we note that

𝑉 𝜙𝜔
𝑡 =∫𝜔

(

∫𝜙
𝑒𝑖𝜙𝜑𝑤𝑟(𝜙|𝜇𝜔

𝑡 , 𝑉𝑡)𝑑𝜙
)

(𝜔 −𝛺𝑡)𝜑(𝜔|𝛺𝑡, 𝑉
𝜔
𝑡 )𝑑𝜔

Setting 𝑢 = 𝜔 −𝛺𝑡,

𝑉 𝜙𝜔
𝑡 =∫𝑢

(

∫𝜙
𝑒𝑖𝜙𝜑𝑤𝑟(𝜙|𝑆𝑡𝑢 + 𝜇𝑡, 𝑉𝑡)𝑑𝜙

)

𝑢𝜑(𝑢|0, 𝑉 𝜔
𝑡 )𝑑𝑢

rom (3),

𝜙𝜔
𝑡 =∫𝑢

𝑒𝑆𝑡𝑢+𝜇𝑡−
𝑉𝑡
2 𝑢𝜑(𝑢|0, 𝑉 𝜔

𝑡 )𝑑𝑢

=𝑒𝜇𝑡−
𝑉𝑡
2
∫𝑢

𝑒𝑆𝑡𝑢𝑢 1
√

2𝜋𝑉 𝜔
𝑡

𝑒
−𝑢2
2𝑉 𝜔

𝑡 𝑑𝑢

=𝑒𝜇𝑡−
𝑉𝑡
2
∫ 𝑢 1

√ 𝜔
𝑒
− 1

2𝑉 𝜔
𝑡

(𝑢−𝑆𝑡𝑖𝑉 𝜔
𝑡 )2−

𝑆2𝑡 𝑉
𝜔
𝑡

2 𝑑𝑢

𝑢 2𝜋𝑉𝑡
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d

𝑉

(
w

v
p

𝑉

a

w

𝛬

A

=𝑒𝜇𝑡−
𝑉𝑡
2 −

𝑆2𝑡 𝑉
𝜔
𝑡

2
∫𝑢

𝑢 1
√

2𝜋𝑉 𝜔
𝑡

𝑒
− 1

2𝑉 𝜔
𝑡

(𝑢−𝑆𝑡𝑖𝑉 𝜔
𝑡 )2

𝑑𝑢

The integral term expresses the expected value of 𝑢 over a Gaussian
istribution with mean 𝑆𝑡𝑖𝑉

𝜔
𝑡 , and therefore equals that mean:

𝜙𝜔
𝑡 =𝑒𝜇𝑡−

𝑉𝑡
2 𝑒−

𝑆2𝑡 𝑉
𝜔
𝑡

2 𝑆𝑡𝑖𝑉
𝜔
𝑡 (14)

Next, we calculate:

𝑍𝑡 =∫𝜙,𝜔
𝑒𝑖𝜙𝑝𝑡(𝜙,𝜔)𝑑𝜙𝑑𝜔

=∫𝜔
𝜑(𝜔|𝛺𝑡, 𝑉

𝜔
𝑡 )∫𝜙

𝑒𝑖𝜙𝜑𝑤𝑟(𝜙|𝜇𝜔
𝑡 , 𝑉𝑡)𝑑𝜙𝑑𝜔

Calculating the integral as in (14), we have

𝑍𝑡 =𝑒
𝑖𝜇𝜔𝑡 −

𝑉𝑡
2 −

𝑆2𝑡 𝑉
𝜔
𝑡

2

Substituting into (14):

𝑉 𝜙𝜔
𝑡 =𝑍𝑡𝑆𝑡𝑖𝑉

𝜔
𝑡

So we can calculate 𝑆𝑡 at any time using

𝑆𝑡 =
𝑉 𝜙𝜔
𝑡

𝑍𝑡𝑖𝑉 𝜔
𝑡

(15)

𝑆𝑡 should be a real number, but may not be due to numerical issues;
e therefore only take the real part of this expression in the code.)

We calculate expectations using Fourier expansions as in the pre-
ious section, using the expected tempo 𝛺𝑡 to scale event expectation
recision 𝑣𝑗 :

𝛬𝑡 ∶=E[𝜆(𝜙,𝜔)]

=
∑

𝑗

𝜆𝑗
2𝜋

∞
∑

𝑚=−∞
𝑒𝑥𝑝

(

−𝑚2 𝑉𝑡 + 𝑣𝑗𝛺2
𝑡 + 𝑉 𝜔

𝑡 𝑆2

2
− 𝑖𝑚(𝜇𝑡 − 𝜙𝑗 )

)

�̂� ∶= 1
𝛬𝑡

E[𝑒𝑖𝜙𝜆(𝜙,𝜔)]

= 1
𝛬𝑡

∑

𝑗

𝜆𝑗
2𝜋

×
∞
∑

𝑚=−∞
𝑒𝑥𝑝

(

−
𝑚2(𝑉𝑡 + 𝑉 𝜔

𝑡 𝑆2)
2

−
𝑣𝑗𝛺2

𝑡 (𝑚 + 1)2

2
− 𝑖𝑚(𝜇𝑡 − 𝜙𝑗 ) + 𝑖𝜙𝑗

)

�̂� ∶= 1
𝛬𝑡

E[𝜔𝜆(𝜙,𝜔)]

= 1
𝛬𝑡

∑

𝑗

𝜆𝑗
2𝜋

×
∞
∑

𝑚=−∞
(𝛺𝑡 − 𝑖𝑚𝑉 𝜔

𝑡 )𝑒𝑥𝑝

(

−𝑚2 𝑉𝑡 + 𝑣𝑗𝛺2
𝑡 + 𝑉 𝜔

𝑡 𝑆2

2
− 𝑖𝑚(𝜇𝑡 − 𝜙𝑗 )

)

�̂�𝜔 ∶= 1
𝛬𝑡

E[𝑒𝑖𝜙(𝜔 −𝛺𝑡+)𝜆(𝜙,𝜔)]

= 1
𝛬𝑡

∑

𝑗

𝜆𝑗
2𝜋

∞
∑

𝑚=−∞
(𝛺𝑡 − 𝑖𝑚𝑉 𝜔)

× 𝑒𝑥𝑝

(

−
𝑚2(𝑉 + 𝑉 𝜔

𝑡 𝑆2)
2

−
𝑣𝑗𝛺2

𝑡 (𝑚 + 1)2

2
− 𝑥𝑖𝑚(𝜇 − 𝜙𝑗 ) + 𝑖𝜙𝑗

)

− 𝛺𝑡+�̂�

̂𝑉 𝜔 ∶= 1
𝛬𝑡

E[(𝜔 −𝛺𝑡+)2𝜆(𝜙,𝜔)]

= 1
𝛬𝑡

∑

𝑗

𝜆𝑗
2𝜋

×
∞
∑

𝑚=−∞
𝑅𝑒

(

𝑉 𝜔
𝑡 𝑒𝑥𝑝

(

−𝑚2 𝑉𝑡 + 𝑣𝑗𝛺2
𝑡 + 𝑉 𝜔

𝑡 𝑆2

2
− 𝑖𝑚(𝜇𝑡 − 𝜙𝑗 )

))

+ (𝛺 +𝛺 − 2�̂�)(𝛺 −𝛺 )
17

𝑡+ 𝑡 𝑡+ 𝑡
A.3. Gradient c-PATIPPET

We define

𝑌 𝜔
𝑡 ∶=∫𝜙

𝑒𝑖𝜙𝑝𝑡(𝜙,𝜔)𝑑𝜙

𝑃𝜔
𝑡 ∶=∫𝜙

𝑝𝑡(𝜙,𝜔)𝑑𝜙

As in the previous section, we calculate the differentials using (13)
nd then calculate the integrals by parts:

𝑑𝑌 𝜔 =∫𝜙
𝑒𝑖𝜙𝑑𝑝𝑡(𝜙,𝜔)𝑑𝜙

=𝑌𝑡

(

𝑖𝜔 −
(𝜎𝜙)2

2

)

𝑑𝑡 − 𝑘(𝜔 − 𝜔𝑝)
𝜕𝑌
𝜕𝜔

𝑑𝑡 +
(𝜎𝜔)2

2
𝜕2𝑌
𝜕𝜔2

𝑑𝑡

+ (𝑌 − 𝑌 𝜔
𝑡 )(𝑑𝑁𝑡 − 𝑑𝑡)

𝑑𝑃𝜔 =∫𝜙
𝑑𝑝𝑡(𝜙,𝜔)𝑑𝜙

= − 𝑘(𝜔 − 𝜔𝑝)
𝜕𝑃
𝜕𝜔

𝑑𝑡 +
(𝜎𝜔)2

2
𝜕2𝑃
𝜕𝜔2

𝑑𝑡 + (𝑃 − 𝑃𝜔
𝑡 )(𝑑𝑁𝑡 − 𝑑𝑡)

here 𝑌 and 𝑃 are defined below. Breaking tempo into discrete 𝛥𝜔 bins
at evenly-spaced values 𝜔[𝑖], we can rewrite the partial derivatives as
discrete approximations:

𝜕𝑌 [𝑖]

𝜕𝜔
≈𝑌 [𝑖+1] − 𝑌 [𝑖−1]

2𝛥𝜔
= 𝑌 [𝑖+1] − 𝑌 [𝑖]

2𝛥𝜔
+ 𝑌 [𝑖] − 𝑌 [𝑖−1]

2𝛥𝜔
𝜕2𝑌 [𝑖]

𝜕𝜔2
≈𝑌 [𝑖+1] − 𝑌 [𝑖]

𝛥𝜔2
− 𝑌 [𝑖] − 𝑌 [𝑖−1]

𝛥𝜔2

and similarly for 𝑃 . Thus, 𝑌 [𝑖] behaves like a chain of coupled oscil-
lators, and 𝑃 [𝑖] behaves like a chain of coupled scalars. At the edges
of the chain, we implement closed boundary conditions by setting the
appropriate terms to zero.

Recall that 𝑝𝑡(𝜙,𝜔[𝑖]) = 𝑃 [𝑖]
𝑡 𝜑𝑤𝑟(𝜙|𝜇

[𝑖]
𝑡 , 𝑉 [𝑖]

𝑡 ). Drawing on the calcula-
tions in Appendix A.1, we write expressions for 𝑌 and 𝑃 :

[𝑖]
𝑡 ∶=∫𝜙

𝑝𝑡(𝜙|𝜔[𝑖])𝜆(𝜙,𝜔)𝑑𝜙 = 1
2𝜋

∞
∑

𝑚=−∞

∑

𝑗
𝜆𝑗𝑒

−𝑚2 𝑉 [𝑖]
𝑡 +𝑣𝑗 (𝜔[𝑖] )2

2 +𝑖𝑚(𝜇[𝑖]𝑡 −𝜙𝑗 )

𝛬𝑡 ∶=∫𝜙,𝜔
𝑝𝑡(𝜙,𝜔)𝜆(𝜙,𝜔)𝑑𝜙𝑑𝜔 ≈

∑

𝑖
𝑃 [𝑖]
𝑡 𝛬[𝑖]

𝑡 𝛥𝜔

𝑃 [𝑖] = 1
𝛬𝑡 ∫𝜙

𝑝𝑡(𝜙,𝜔[𝑖])𝜆(𝜙,𝜔[𝑖])𝑑𝜙 =
𝑃 [𝑖]
𝑡 𝛬[𝑖]

𝑡
𝛬𝑡

𝑌 [𝑖] = 1
𝛬𝑡 ∫𝜙

𝑝𝑡(𝜙,𝜔[𝑖])𝑒𝑖𝜙𝜆(𝜙,𝜔)𝑑𝜙

=
𝑃 [𝑖]
𝑡

2𝜋𝛬𝑡

∞
∑

𝑚=−∞

∑

𝑗
𝜆𝑗𝑒

−
(𝑚+1)2𝑉 [𝑖]

𝑡
2 −

𝑚2𝑣𝑗 (𝜔[𝑖] )2

2 +𝑖(𝑚+1)𝜇[𝑖]𝑡 −𝑖𝑚𝜙𝑗

We define 𝑍[𝑖]
𝑡 as the center of mass of the distribution over phase,

conditioned on tempo 𝜔[𝑖]:

𝑍[𝑖]
𝑡 ∶= ∫𝜙

𝑒𝑖𝜙𝑝𝑡(𝜙|𝜔[𝑖])𝑑𝜙 =
𝑌 [𝑖]
𝑡

𝑃 [𝑖]
𝑡

s in A.1, we can define estimated phase 𝜇[𝑖]
𝑡 and uncertainty/variance

𝑉 [𝑖]
𝑡 , this time conditioned on tempo 𝜔[𝑖]:

𝜇[𝑖]
𝑡 ∶=𝑎𝑟𝑔(𝑍[𝑖]

𝑡 )

𝑉 [𝑖]
𝑡 ∶= − 2 ln(|𝑍[𝑖]

𝑡 |)

Appendix B. Simulation parameters

All code will be made available at https://github.com/Kappers/

cpippet-JMathPsych.

https://github.com/Kappers/cpippet-JMathPsych
https://github.com/Kappers/cpippet-JMathPsych
https://github.com/Kappers/cpippet-JMathPsych
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𝜔

C
1

𝜎

C

𝜎

C

D

D

F

F

K

K

K

L

L

L

L

L

Configuration for c-PIPPET simulations:

𝑑𝑡 = 0.005

𝜎𝜙 = 0.2

𝜇0 = 0.0

𝑉0 = 0.1

𝜆0 = 0.001

𝜇𝑗 = {0.0, }

𝑣𝑗 = {0.01, }

𝜆𝑗 = {0.01, }

Configuration specific to gradient c-PATIPPET:

𝑁 = 21

𝛥𝜔 =
72 bpm
𝑁 − 1

[𝑖] = {72 bpm, 72 bpm + 𝛥𝜔,… , 144 bpm}

onfiguration for c-PATIPPET tempo change simulations (Figs. 8 and
1):

𝑑𝑡 = 0.005

𝜎𝜙 = 0.3
𝜔 = 0.4

𝜙𝑗 = {0, }

𝑣𝑗 = {0.0001, }

𝜆𝑗 = {0.01, }

𝜆0 = 0.00001

onfiguration for c-PATIPPET complex rhythms (Figs. 9 and 12):

𝜎𝜙 = 0.3
𝜔 = 0.4

𝜙𝑗 = {0, 𝜋}

𝑣𝑗 = {0.0001, 0.0004}

𝜆𝑗 = {0.1, 0.003}

𝜆0 = 0.00001

Initial conditions for variational c-PATIPPET complex rhythms (Fig. 9):

𝜇0 =0

𝑉0 =1

𝜔0 =10.5

𝑉 𝜔
0 =1

𝑆0 =0

Initial conditions for gradient c-PATIPPET complex rhythms (Fig. 12):

𝜇[𝑖]
0 =0

𝑉 [𝑖]
0 =1

𝑃 [𝑖]
0 = 1

𝑁𝛥𝜔
(uniform distribution)
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